Изучение свойств натуральных чисел привело пифагорейцев к еще одной «вечной» проблеме теоретической арифметики (теории чисел) - проблеме, ростки которой пробивались задолго до Пифагора в Древнем Египте и Древнем Вавилоне, а общее решение не найдено и поныне. Начнем с задачи, которую в современных терминах можно сформулировать так: решить в натуральных числах неопределенное уравнение

Сегодня эта задача именуется задачей Пифагора , а ее решения - тройки натуральных чисел, удовлетворяющих уравнению (1.2.1), - называются пифагоровыми тройками . В силу очевидной связи теоремы Пифагора с задачей Пифагора последней можно дать геометрическую формулировку: найти все прямоугольные треугольники с целочисленными катетами x , y и целочисленной гипотенузой z .

Частные решения задачи Пифагора были известны в глубокой древности. В папирусе времен фараона Аменемхета I (ок. 2000 до н. э.), хранящемся в Египетском музее в Берлине, мы находим прямоугольный треугольник с отношением сторон (). По мнению крупнейшего немецкого историка математики М. Кантора (1829 - 1920), в Древнем Египте существовала особая профессия гарпедонаптов - «натягивателей веревок», которые во время торжественной церемонии закладки храмов и пирамид размечали прямые углы с помощью веревки, имеющей 12 (= 3 + 4 + 5) равноотстоящих узлов. Способ построения прямого угла гарпедонаптами очевиден из рисунка 36.

Надо сказать, что с Кантором категорически не согласен другой знаток древней математики - ван дер Варден, хотя сами пропорции древнеегипетской архитектуры свидетельствуют в пользу Кантора. Как бы то ни было, сегодня прямоугольный треугольник с отношением сторон называется египетским .

Как отмечалось на с. 76, сохранилась глиняная табличка, относящаяся к древневавилонской эпохе и содержащая 15 строк пифагоровых троек. Помимо тривиальной тройки, получаемой из египетской (3, 4, 5) умножением на 15 (45, 60, 75), здесь есть и весьма сложные пифагоровы тройки, такие, как (3367, 3456, 4825) и даже (12709, 13500, 18541)! Нет никаких сомнений, что эти числа были найдены не простым перебором, а по неким единым правилам.

И тем не менее вопрос об общем решении уравнения (1.2.1) в натуральных числах был поставлен и решен только пифагорейцами. Общая постановка какой бы то ни было математической задачи была чужда как древним египтянам, так и древним вавилонянам. Только с Пифагора начинается становление математики как дедуктивной науки, и одним из первых шагов на этом пути было решение задачи о пифагоровых тройках. Первые решения уравнения (1.2.1) античная традиция связывает с именами Пифагора и Платона. Попробуем реконструировать эти решения.


Ясно, что уравнение (1.2.1) Пифагор мыслил не в аналитической форме, а в виде квадратного числа , внутри которого нужно было отыскать квадратные числа и . Число естественно было представить в виде квадрата со стороной y на единицу меньше стороны z исходного квадрата, т. е. . Тогда, как легко видеть из рисунка 37 (именно видеть!), для оставшегося квадратного числа должно выполняться равенство . Таким образом, мы приходим к системе линейных уравнений

Складывая и вычитая эти уравнения, находим решение уравнения (1.2.1):

Легко убедиться в том, что полученное решение дает натуральные числа только при нечетных . Таким образом, окончательно имеем

И т. д. Это решение традиция связывает с именем Пифагора.

Заметим, что система (1.2.2) может быть получена и формально из уравнения (1.2.1). В самом деле,

откуда, полагая , приходим к (1.2.2).

Ясно, что решение Пифагора найдено при достаточно жестком ограничении () и содержит далеко не все пифагоровы тройки. Следующим шагом можно положить , тогда , так как только в этом случае будет квадратным числом. Так возникает система также будет пифагоровой тройкой. Теперь может быть доказана основная

Теорема. Если p и q взаимно простые числа разной четности , то все примитивные пифагоровы тройки находятся по формулам

Червяк Виталий

Скачать:

Предварительный просмотр:

Конкурс научных проектов школьников

В рамках краевой научно-практической конференции «Эврика»

Малой академии наук учащихся Кубани

Исследование пифагоровых чисел

Секция математика.

Червяк Виталий Геннадиевич, 9 класс

МОБУ СОШ №14

Кореновский район

Ст. Журавская

Научный руководитель:

Манько Галина Васильевна

Учитель математики

МОБУ СОШ №14

Кореновск 2011 г

Червяк Виталий Геннадиевич

Пифагоровы числа

Аннотация.

Тема исследования: Пифагоровы числа

Цели исследования:

Задачи исследования:

  • Выявление и развитие математических способностей;
  • Расширение математического представления по данной теме;
  • Формирование устойчивого интереса к предмету;
  • Развитие коммуникативных и общеучебных навыков самостоятельной работы, умение вести дискуссию, аргументировать и т.д.;
  • Формирование и развитие аналитического и логического мышления;

Методы исследования:

  • Использование ресурсов сети Интернет;
  • Обращение к справочной литературе;
  • Проведение эксперимента;

Вывод:

  • Эта работа может быть использована на уроке геометрии как дополнительный материал, для проведения элективных курсов или факультативов по математике, а также во внеклассной работе по математике;

Червяк Виталий Геннадиевич

Краснодарский край, станица Журавская, МОБУ СОШ №14, 9 класс

Пифагоровы числа

Научный руководитель: Манько Галина Васильевна, учитель математики МОБУ СОШ №14

  1. Введение…………………………………………………………………3
  2. Основная часть

2.1 Историческая страничка……………………………………………………4

2.2 Доказательство чётности и нечётности катетов……….............................5-6

2.3 Вывод закономерности для нахождения

Пифагоровых чисел……………………………………………………………7

2.4 Свойства пифагоровых чисел ……………………………………………… 8

3. Заключение……………………………………………………………………9

4.Список использованных источников и литературы…………………… 10

Приложения.........................................................................................................11

Приложение I……………………………………………………………………11

Приложение II…………………………………………………………………..13

Червяк Виталий Геннадиевич

Краснодарский край, станица Журавская, МОБУ СОШ №14, 9 класс

Пифагоровы числа

Научный руководитель: Манько Галина Васильевна, учитель математики МОБУ СОШ №14

Введение

О Пифагоре и его жизни я услышал в пятом классе на уроке математики, и меня заинтересовало высказывание «Пифагоровы штаны во все стороны равны». При изучении теоремы Пифагора меня заинтересовали пифагоровы числа.Я поставил цель исследования : узнать больше о теореме Пифагора и «пифагоровых числах».

Актуальность темы . Ценность теоремы Пифагора и пифагоровых троек доказана многими учёнными мира на протяжении многих веков. Проблема, о которой пойдёт речь в моей работе выглядит довольно простой потому, что в основе её лежит математическое утверждение, которое всем известно, - теорема Пифагора: в любом прямоугольном треугольнике квадрат, построенный на гипотенузе, равен сумме квадратов, построенных на катетах. Теперь тройки натуральных чисел x, y, z, для которых x 2 + y 2 = z 2 , принято называть пифагоровыми тройками . Оказывается, пифагоровы тройки знали уже в Вавилоне. Постепенно нашли их и греческие математики.

Цель данной работы

  1. Исследовать пифагоровы числа;
  2. Понять, как получаются пифагоровы числа;
  3. Выяснить, какими свойствами обладают пифагоровы числа;
  4. Опытно-экспериментальным путём построить перпендикулярные прямые на местности, используя пифагоровы числа;

В соответствии с целью работы поставлен ряд следующих задач :

1. Глубже изучить историю теоремы Пифагора;

2. Анализ универсальных свойств пифагоровых троек.

3. Анализ практического применения пифагоровых троек.

Объект исследования : пифагоровы тройки.

Предмет исследования : математика .

Методы исследования : - Использование ресурсов сети Интернет; -Обращение к справочной литературе; -Проведение эксперимента;

Теоретическая значимость: роль, которую играет открытие пифагоровых троек в науке; практическое применение открытия Пифагора в жизнедеятельности человека.

Прикладная ценность исследования заключается в анализе литературных источников и систематизации фактов.

Червяк Виталий Геннадиевич

Краснодарский край, станица Журавская, МОБУ СОШ №14, 9 класс

Пифагоровы числа

Научный руководитель: Манько Галина Васильевна, учитель математики МОБУ СОШ №14

Из истории пифагоровых чисел.

  • Древний Китай:

Математическая книга Чу-пей: [ 2]

"Если прямой угол разложить на составные части, то линия, соединяющая концы его сторон, будет 5, когда основание есть 3, а высота 4".

  • Древний Египет: [ 2]

Кантор (крупнейший немецкий историк математики) считает, что равенство 3 ² + 4 ² = 5² было известно уже египтянам еще около 2300 г. до н. э., во времена царя Аменемхета (согласно папирусу 6619 Берлинского музея). По мнению Кантора гарпедонапты , или "натягиватели веревок", строили прямые углы при помощи прямоугольных треугольников со сторонами 3; 4 и 5.

  • Вавилония: [ 3 ]

«Заслугой первых греческих математиков, таких как Фалес, Пифагор и пифагорейцы, является не открытие математики, но ее систематизация и обоснование. В их руках вычислительные рецепты, основанные на смутных представлениях, превратились в точную науку."

  • История теоремы Пифагора: ,

Хотя эта теорема и связывается с именем Пифагора, она была известна задолго до него.

В вавилонских текстах она встречается за 1200 лет до Пифагора.

По-видимому, он первым нашёл её доказательство. В связи с этим была сделана следующую запись: «… когда он открыл, что в прямоугольном треугольнике гипотенуза имеет соответствие с катетами, он принес в жертву быка, сделанного из пшеничного теста».

Червяк Виталий Геннадиевич

Краснодарский край, станица Журавская, МОБУ СОШ №14, 9 класс

Пифагоровы числа

Научный руководитель: Манько Галина Васильевна, учитель математики МОБУ СОШ №14

Исследование Пифагоровых чисел.

  • Каждый треугольник, стороны относятся как 3:4:5, согласно общеизвестной теореме Пифагора, - прямоугольный, так как

3 2 + 4 2 = 5 2.

  • Кроме чисел 3,4 и 5 , существует, как известно, бесконечное множество целых положительных чисел а, в и с, удовлетворяющих соотношению
  • А 2 + в 2 = с 2.
  • Эти числа называются пифагоровыми числами

Пифагоровы тройки известны очень давно. В архитектуре древнелесопотамских надгробий встречается равнобедренный треугольник, составленный из двух прямоугольных со сторонами 9, 12 и 15 локтей. Пирамиды фараона Снофру (XXVII век до н.э.) построены с использованием треугольников со сторонами 20, 21 и 29, а также 18, 24 и 30 десятков египетских локтей. [ 1 ]

Прямоугольный треугольник, с катетами 3, 4 и гипотенузой 5 называется египетским треугольником. Площадь этого треугольника равна совершенному числу 6. Периметр равен 12 – числу, которое считалось символом счастья и достатка.

С помощью верёвки разделенной узлами на 12 равных частей древние египтяне строили прямоугольный треугольник и прямой угол. Удобный и очень точный способ, употребляемый землемерами для проведения на местности перпендикулярных линий. Необходимо взять шнур и три колышка, шнур располагают треугольником так, чтобы одна сторона состояла из 3 частей, вторая из 4 долей и последняя из пяти таких долей. Шнур расположится треугольником, в котором есть прямой угол.

Этот древний способ, по-видимому, применявшийся ещё тысячелетия назад строителями египетских пирамид, основан на том, что каждый треугольник, стороны которого относятся как 3:4:5, согласно теореме Пифагора, прямоугольный.

Нахождением пифагоровых троек занимались Евклид, Пифагор, Диофант и многие другие. [ 1]

Ясно, что если (x, y, z ) – пифагорова тройка, то для любого натурального k тройка (kx, ky, kz ) также будет пифагоровой тройкой. В частности, (6, 8, 10), (9, 12, 15) и т.д. являются пифагоровыми тройками.

По мере того, как числа возрастают, пифагоровы тройки встречаются всё реже и находить их становится все труднее и труднее. Пифагорейцы изобрели метод отыскания

таких троек и, пользуясь им, доказали, что пифагоровых троек существует бесконечно много.

Тройки, не имеющие общих делителей, больших 1, называются простейшими.

Рассмотрим некоторые свойства пифагоровых троек. [ 1]

Согласно теореме Пифагора эти числа могут служить длинами некоторого прямоугольного треугольника; поэтому а и в называют «катетами»,а с – « гипотенузой».
Ясно, что если а,в,с есть тройка пифагоровых чисел, то и ра,рв,рс, где р- целочисленный множитель,- пифагоровы числа.
Верно и обратное утверждение!
Поэтому будем вначале исследовать лишь тройки взаимно простых пифагоровых чисел (остальные получаются из них умножением на целочисленный множитель р).

Покажем, что в каждой из таких троек а,в,с один из «катетов»должен быть чётным, а другой нечётным. Будем рассуждать «от противного». Если оба «катета» а и в чётны, то чётным будет число а 2 + в 2 , а значит и «гипотенуза». Но это противоречит тому, что числа а,в и с не имеют общих множителей, так как три чётных числа имеют общий множитель 2. Таким образом хоть один из « катетов» а и в нечётен.

Остаётся ещё одна возможность: оба «катета» нечётные, а «гипотенуза» чётная. Нетрудно доказать, что этого не может быть, так как если «катеты» имеют вид 2 х + 1 и 2у+1, то сумма их квадратов равна

4х 2 + 4х + 1 + 4у 2 + 4у +1 = 4 (х 2 + х + у 2 + у) +2, т.е. представляет собой число, которое при делении на 4 даёт в остатке 2. Между тем квадрат всякого чётного числа должен делиться на 4 без остатка.

Значит, сумма квадратов двух нечётных чисел не может быть квадратом чётного числа; иначе говоря, наши три числа - не пифагоровы.

ВЫВОД:

Итак, из « катетов» а, в один чётный, а другой нечётный. Поэтому число а 2 + в 2 нечётно, а значит, нечётна и « гипотенуза» с.

Пифагор нашёл формулы, которые в современной символике могут быть записаны так: a=2n+1, b=2n(n+1), c=2 n 2 +2n+1, где n – целое число.

Эти числа – пифагоровы тройки.

Червяк Виталий Геннадиевич

Краснодарский край, станица Журавская, МОБУ СОШ №14, 9 класс

Пифагоровы числа

Научный руководитель: Манько Галина Васильевна, учитель математики МОБУ СОШ №14

Вывод закономерности для нахождения пифагоровых чисел.

Вот следующие пифагоровы тройки:

  • 3, 4, 5; 9+16=25.
  • 5, 12, 13; 25+144=225.
  • 7, 24, 25; 49+576=625.
  • 8, 15, 17; 64+225=289.
  • 9, 40, 41; 81+1600=1681.
  • 12, 35, 37; 144+1225=1369.
  • 20, 21, 29; 400+441=881

Нетрудно заметить, что при умножении каждого из чисел пифагоровой тройки на 2, 3, 4, 5 и т.д., мы получим следующие тройки.

  • 6, 8, 10;
  • 9,12,15.
  • 12, 16, 20;
  • 15, 20, 25;
  • 10, 24, 26;
  • 18, 24, 30;
  • 16, 30, 34;
  • 21, 28, 35;
  • 15, 36, 39;
  • 24, 32, 40;
  • 14, 48, 50;
  • 30, 40, 50 и т.д.

Они так же являются Пифагоровыми числами/

Червяк Виталий Геннадиевич

Краснодарский край, станица Журавская, МОБУ СОШ №14, 9 класс

Пифагоровы числа

Научный руководитель: Манько Галина Васильевна, учитель математики МОБУ СОШ №14

Свойства пифагоровых чисел.

  • При рассмотрении пифагоровых чисел я увидел ряд свойств:
  • 1) Одно из пифагоровых чисел должно быть кратно трём;
  • 2) Другое из них должно быть кратно четырём;
  • 3) А третье из пифагоровых чисел должно быть кратно пяти;

Червяк Виталий Геннадиевич

Краснодарский край, станица Журавская, МОБУ СОШ №14, 9 класс

Пифагоровы числа

Научный руководитель: Манько Галина Васильевна, учитель математики МОБУ СОШ №14

Заключение.

Геометрия, как и другие науки, возникла из потребностей практики. Само слово «геометрия» - греческое, в переводе означает «землемерие».

Люди очень рано столкнулись с необходимостью измерять земельные участки. Уже за 3-4 тыс. лет до н.э. каждый клочок плодородной земли в долинах Нила, Ефрата и Тигра, рек Китая имел значение для жизни людей. Это требовало определённого запаса геометрических и арифметических знаний.

Постепенно люди начали измерять и изучать свойства более сложных геометрических фигур.

И в Египте и в Вавилоне сооружались колоссальные храмы, строительство которых могло производиться только на основе предварительных расчётов. Также строились водопроводы. Всё это требовало чертежей и расчётов. К этому времени были хорошо известны частные случаи теоремы Пифагора, уже знали, что если взять треугольники со сторонами x, y, z, где x, y, z – такие целые числа, что x 2 + y 2 = z 2 , то эти треугольники будут прямоугольными.

Все эти знания непосредственным образом применялись во многих сферах жизнедеятельности человека.

Так до сих пор великое открытие учёного и философа древности Пифагора находит прямое применение в нашей жизни.

Строительство домов, дорог, космических кораблей, автомобилей, станков, нефтепроводов, самолётов, тоннелей, метро и многое, многое другое. Пифагоровы тройки находят прямое применение в проектировании множества вещей, окружающих нас в повседневной жизни.

А умы учёных продолжают искать новые варианты доказательств теоремы Пифагора.

  • В результате моей работы мне удалось:
  • 1. Больше узнать о Пифагоре, его жизни, братстве Пифагорейцев.
  • 2. Познакомится с историей теоремы Пифагора.
  • 3. Узнать о пифагоровых числах, их свойствах, научиться их находить и применять в практической деятельности.

Червяк Виталий Геннадиевич

Краснодарский край, станица Журавская, МОБУ СОШ №14, 9 класс

Пифагоровы числа

Научный руководитель: Манько Галина Васильевна, учитель математики МОБУ СОШ №14

Литература.

  1. Занимательная алгебра. Я.И. Перельман (с.117-120)
  2. www.garshin.ru
  3. image.yandex.ru

4. Аносов Д.В. Взгляд на математику и нечто из неё. – М.: МЦНМО, 2003.

5. Детская энциклопедия. – М.: Издательство Академии Педагогических Наук РСФСР, 1959.

6. Степанова Л.Л. Избранные главы элементарной теории чисел. – М.: Прометей, 2001.

7. В. Серпинский Пифагоровы треугольники. - М.: Учпедгиз, 1959. С.111

Ход исследования Историческая страничка; Теорема Пифагора; Доказать, что один из « катетов» должен быть чётным, а другой нечётным; Вывод закономерности для нахождения пифагоровых чисел; Выявить свойства пифагоровых чисел;

Введение О Пифагоре и его жизни я услышал в пятом классе на уроке математики, и меня заинтересовало высказывание «Пифагоровы штаны во все стороны равны». При изучении теоремы Пифагора меня заинтересовали пифагоровы числа. Я поставил цель исследования: узнать больше о теореме Пифагора и «пифагоровых числах».

Пр ебудет вечной истина, как скоро Её познает слабый человек! И ныне теорема Пифагора Верна, как и в его далёкий век

Из истории пифагоровых чисел. Древний Китай Математическая книга Чу-пей: "Если прямой угол разложить на составные части, то линия, соединяющая концы его сторон, будет 5, когда основание есть 3, а высота 4".

Пифагоровы числа у древних египтян Кантор (крупнейший немецкий историк математики) считает, что равенство 3 ² + 4 ² = 5² было известно уже египтянам еще около 2300 г. до н. э., во времена царя Аменемхета (согласно папирусу 6619 Берлинского музея). По мнению Кантора гарпедонапты, или " натягиватели веревок", строили прямые углы при помощи прямоугольных треугольников со сторонами 3; 4 и 5.

Теорема Пифагора в Вавилонии «Заслугой первых греческих математиков, таких как Фалес, Пифагор и пифагорейцы, является не открытие математики, но ее систематизация и обоснование. В их руках вычислительные рецепты, основанные на смутных представлениях, превратились в точную науку."

Каждый треугольник, стороны относятся как 3:4:5, согласно общеизвестной теореме Пифагора, - прямоугольный, так как 3 2 + 4 2 = 5 2. Кроме чисел 3,4 и 5 , существует, как известно, бесконечное множество целых положительных чисел а, в и с, удовлетворяющих соотношению А 2 + в 2 = с 2. Эти числа называются пифагоровыми числами

Согласно теореме Пифагора эти числа могут служить длинами некоторого прямоугольного треугольника; поэтому а и в называют «катетами», а с – « гипотенузой». Ясно, что если а,в,с есть тройка пифагоровых чисел, то и ра,рв,рс, где р - целочисленный множитель,- пифагоровы числа. Верно и обратное утверждение! Поэтому будем вначале исследовать лишь тройки взаимно простых пифагоровых чисел (остальные получаются из них умножением на целочисленный множитель р)

Вывод! Итак из чисел а и в одно чётно, а другое нечётно, а значит нечётно и третье число.

Вот следующие Пифагоровы тройки: 3, 4, 5; 9+16=25 . 5, 12, 13; 25+144=169. 7, 24, 25; 49+576=625. 8, 15, 17; 64+225=289. 9, 40, 41; 81+1600=1681. 12, 35, 37; 144+1225=1369. 20, 21, 29; 400+441=841

Нетрудно заметить, что при умножении каждого из чисел пифагоровой тройки на 2, 3, 4, 5 и т.д., мы получим следующие тройки. 6, 8, 10; 9,12,15. 12, 16, 20; 15, 20, 25; 10, 24, 26; 18, 24, 30; 16, 30, 34; 21, 28, 35; 15, 36, 39; 24, 32, 40; 14, 48, 50; 30, 40, 50 и т.д. Они так же являются Пифагоровыми числами

Свойства пифагоровых чисел При рассмотрении пифагоровых чисел я увидел ряд свойств: 1) Одно из пифагоровых чисел должно быть кратно трём; 2) одно из них должно быть кратно четырём; 3) А другое из пифагоровых чисел должно быть кратно пяти;

Практическое применение пифагоровых чисел

Вывод: В результате моей работы мне удалось 1. Больше узнать о Пифагоре, его жизни, братстве Пифагорейцев. 2. Познакомится с историей теоремы Пифагора. 3. Узнать о пифагоровых числах, их свойствах, научиться их находить. Опытно –экспериментальным путём откладывать прямой угол с помощью пифагоровых чисел.

«Областной центр образования»

Методическая разработка

Использование пифагоровых троек при решении

геометрических задач и тригонометрических заданий ЕГЭ

г. Калуга, 2016

I. Введение

Теорема Пифагора – одна из главных и, можно даже сказать, самая главная теорема геометрии. Значение её состоит в том, что из неё или с её помощью можно вывести большинство теорем геометрии. Теорема Пифагора замечательна ещё и тем, что сама по себе она вовсе не очевидна. Например, свойства равнобедренного треугольника можно видеть непосредственно на чертеже. Но сколько ни гляди на прямоугольный треугольник, никак не увидишь, что между его сторонами есть такое простое соотношение: a2+ b2= c2 . Однако не Пифагор открыл теорему, носящую его имя. Она была известна еще раньше, но, возможно, только как факт, выведенный из измерений. Надо думать, Пифагор знал это, но нашел доказательство.

Существует бесчисленное множество натуральных чисел a, b, c , удовлетворяющих соотношению a2+ b2= c2 .. Они называются пифагоровыми числами. Согласно теореме Пифагора такие числа могут служить длинами сторон некоторого прямоугольного треугольника – будем называть их пифагоровыми треугольниками.

Цель работы: изучить возможность и эффективность применения пифагоровых троек для решения задач школьного курса математики, заданий ЕГЭ.

Исходя из цели работы, поставлены следующие задачи :

Изучить историю и классификацию пифагоровых троек. Проанализировать задачи с применением пифагоровых троек, имеющиеся в школьных учебниках и встречающиеся в контрольно-измерительных материалах ЕГЭ. Оценить эффективность применения пифагоровых троек и их свойств для решения задач.

Объект исследования : пифагоровы тройки чисел.

Предмет исследования : задачи школьного курса тригонометрии и геометрии, в которых используются пифагоровы тройки.

Актуальность исследования . Пифагоровы тройки часто используются в геометрии и тригонометрии, знание их избавит от ошибок в вычислениях и экономит время.

II. Основная часть. Решение задач с помощью пифагоровых троек.

2.1.Таблица троек пифагоровых чисел (по Перельману)

Пифагоровы числа имеют вид a = m·n , , где m и n – некоторые взаимно простые нечетные числа.

Пифагоровы числа обладают рядом любопытных особенностей:

Один из «катетов» должен быть кратным трем.

Один из «катетов» должен быть кратным четырем.

Одно из пифагоровых чисел должно быть кратным пяти.

В книге «Занимательная алгебра» приводится таблица пифагоровых троек, содержащих числа до ста, не имеющих общих множителей.

32+42=52

52+122=132

72+242=252

92+402=412

112+602=612

132+842=852

152+82=172

212 +202=292

332+562=652

392+802=892

352+122=372

452+282=532

552+482=732

652+722=972

632+162=652

772+362=852

2.2. Классификация пифагоровых троек по Шустрову.

Шустровым была обнаружена такая закономерность: если все пифагоровы треугольники распределить по группам, то для нечетного катета x, четного y и гипотенузы z справедливы следующие формулы:

х = (2N-1)·(2n+2N-1); y = 2n·(n+2N-1); z = 2n·(n+2N-1)+(2N-1) 2, где N – номер семейства и n – порядковый номер треугольника в семействе.

Подставляя в формулу в место N и n любые целые положительные числа, начиная с единицы, можно получить, все основные пифагоровы тройки чисел, а также кратные определенного вида. Можно составить таблицу всех пифагоровых троек по каждому семейству.

2.3. Задачи по планиметрии

Рассмотрим задачи из различных учебников по геометрии и выясним, насколько часто встречаются пифагоровы тройки в этих заданиях. Тривиальные задачи на нахождение третьего элемента по таблице пифагоровых троек рассматривать не будем, хотя они тоже встречаются в учебниках. Покажем, как свести решение задачи, данные которой не выражены натуральными числами, к пифагоровым тройкам.

Рассмотрим задачи из учебника по геометрии для 7-9 класса .

№ 000. Найдите гипотенузу прямоугольного треугольника по катетам а =, b =.

Решение. Умножим длины катетов на 7, получим два элемента из пифагоровой тройки 3 и 4. Недостающий элемент 5, который делим на 7. Ответ .

№ 000. В прямоугольнике ABCD найдите BC, если CD=1,5, AC=2,5.

https://pandia.ru/text/80/406/images/image007_0.gif" width="240" height="139 src=">

Решение. Решим прямоугольный треугольник АСD. Умножим длины на 2, получим два элемента из пифагоровой тройки 3 и 5, Недостающий элемент 4, который делим на 2. Ответ: 2.

При решении следующего номера проверять соотношение a2+ b2= c2 совершенно необязательно, достаточно воспользоваться пифагоровыми числами и их свойствами.

№ 000. Выясните, является ли треугольник прямоугольным, если его стороны выражаются числами:

а) 6,8,10 (пифагорова тройка 3,4.5) – да;

Один из катетов прямоугольного треугольника должен делиться на 4. Ответ: нет.

в) 9,12,15 (пифагорова тройка 3,4.5) – да;

г) 10,24,26 (пифагорова тройка 5,12.13) – да;

Одно из пифагоровых чисел должно быть кратным пяти. Ответ: нет.

ж) 15, 20, 25 (пифагорова тройка 3,4.5) – да.

Из тридцати девяти заданий данного параграфа (теорема Пифагора) двадцать два решаются устно с помощью пифагоровых чисел и знания их свойств.

Рассмотрим задачу № 000 (из раздела «Дополнительные задачи»):

Найдите площадь четырехугольника ABCD, в котором АВ=5 см, ВС=13 см, CD=9 см, DА=15 см, АС=12 см.

В задаче надо проверить соотношение a2+ b2= c2 и доказать, что данный четырехугольник состоит из двух прямоугольных треугольников (обратная теорема). А знание пифагоровых троек: 3, 4, 5 и 5, 12, 13, избавляет от вычислений.

Приведем решения нескольких задач из учебника по геометрии для 7-9 класса .

Задача 156 (з). Катеты прямоугольного треугольника равны 9 и 40. Найдите медиану, проведенную к гипотенузе.

Решение. Медиана, проведенная к гипотенузе, равна ее половине. Пифагорова тройка 9,40 и 41. Следовательно, медиана равна 20,5.

Задача 156 (и). Боковые стороны треугольника равны: а = 13 см, b = 20 см, а высота hс = 12 см. Найдите основание с.

Задача (КИМы ЕГЭ). Найдите радиус окружности, вписанной в остроугольный треугольник АВС, если высота ВH равна12 и известно, что sin А=, sin С=left">

Решение. Решаем прямоугольный ∆ АСК: sin А=, ВH=12 , отсюда АВ=13,АК=5 (Пифагорова тройка 5,12,13). Решаем прямоугольный ∆ ВСH: ВH =12, sin С===https://pandia.ru/text/80/406/images/image015_0.gif" width="12" height="13">3=9 (Пифагорова тройка 3,4,5). Радиус находим по формуле r ===4. Ответ.4.

2.4. Пифагоровы тройки в тригонометрии

Основное тригонометрическое тождество – частный случай теоремы Пифагора: sin2a + cos2a = 1; (a/c) 2 + (b/c)2 =1. Поэтому некоторые тригонометрические задания легко решаются устно с помощью Пифагоровых троек.

Задачи, в которых требуется по заданному значению функции найти значения остальных тригонометрических функций, можно решить без возведения в квадрат и извлечения квадратного корня. Все задания этого типа в школьном учебнике алгебры (10-11) Мордковича (№ 000-№ 000) можно решить устно, зная всего несколько пифагоровых троек: 3,4,5 ; 5,12,13 ; 8,15,17 ; 7,24,25 . Рассмотрим решения двух заданий.

№ 000 а). sin t = 4/5, π/2< t < π.

Решение . Пифагорова тройка: 3, 4, 5. Следовательно, cos t = -3/5; tg t = -4/3,

№ 000 б). tg t = 2,4, π< t < 3π/2.

Решение. tg t = 2,4=24/10=12/5. Пифагорова тройка 5,12,13. Учитывая знаки, получаем sin t = -12/13, cos t = -5/13, ctg t = 5/12.

3. Контрольно-измерительные материалы ЕГЭ

а) cos (arcsin 3/5)=4/5 (3, 4, 5)

б) sin (arccos 5/13)=12/13 (5, 12, 13)

в) tg (arcsin 0,6)=0,75 (6, 8, 10)

г) ctg (arccos 9/41) =9/40 (9, 40, 41)

д) 4/3 tg (π–arcsin (–3/5))= 4/3 tg (π+arcsin 3/5)= 4/3 tg arcsin 3/5=4/3·3/4=1

е) проверьте верность равенства:

arcsin 4/5 + arcsin 5/13 + arcsin 16/65 = π/2.

Решение. arcsin 4/5 + arcsin 5/13 + arcsin 16/65 = π/2

arcsin 4/5 + arcsin 5/13 = π/2 - arcsin 16/65

sin (arcsin 4/5 + arcsin 5/13) = sin (arсcos 16/65)

sin (arcsin 4/5) · cos (arcsin 5/13) + cos (arcsin 4/5) · sin (arcsin 5/13) = 63/65

4/5 · 12/13 + 3/5 · 5/13 = 63/65

III. Заключение

В геометрических задачах часто приходится решать прямоугольные треугольники, иногда несколько раз. Проанализировав задания школьных учебников и материалов ЕГЭ, можно сделать вывод, что в основном используются тройки: 3, 4, 5; 5, 12, 13; 7, 24, 25; 9, 40, 41; 8,15,17; которые легко запомнить. При решении некоторых тригонометрических заданий классическое решение с помощью тригонометрических формул и большим количеством вычислений занимает время, а знание пифагоровых троек избавит от ошибок в вычислениях и сэкономит время для решения более трудных задач на ЕГЭ.

Библиографический список

1. Алгебра и начала анализа. 10-11 классы. В 2 ч. Ч. 2. Задачник для общеобразовательных учреждений / [ и др.]; под ред. . – 8-е изд., стер. – М. : Мнемозина, 2007. – 315 с. : ил.

2. Перельман алгебра. – Д.: ВАП, 1994. – 200 с.

3. Рогановский: Учеб. Для 7-9 кл. с углубл. изучением математики общеобразоват. шк. с рус. яз. обучения, - 3-е изд. – Мн.; Нар. Асвета, 2000. – 574 с.: ил.

4. Математика: Хрестоматия по истории, методологии, дидактике. / Сост. . – М.: Изд-во УРАО, 2001. – 384 с.

5. Журнал «Математика в школе» №1, 1965 год.

6. Контрольно-измерительные материалы ЕГЭ.

7. Геометрия, 7-9: Учеб. для общеобразовательных учреждений /, и др. – 13-е изд.. – М. : Просвещение,2003. – 384 с. : ил.

8. Геометрия: Учеб. для 10-11 кл. сред. шк./ , и др. – 2-е изд. – М.: Просвещение, 1993, - 207 с.: ил.

Перельман алгебра. – Д.: ВАП, 1994. – 200 с.

Журнал «Математика в школе» №1, 1965 год.

Геометрия, 7-9: Учеб. для общеобразовательных учреждений /, и др. – 13-е изд.. – М. : Просвещение,2003. – 384 с. : ил.

Рогановский: Учеб. Для 7-9 кл. с углубл. изучением математики общеобразоват. шк. с рус. яз. обучения, - 3-е изд. – Мн.; Нар. Асвета, 2000. – 574 с.: ил.

Алгебра и начала анализа. 10-11 классы. В 2 ч. Ч. 2. Задачник для общеобразовательных учреждений / [ и др.]; под ред. . – 8-е изд., стер. – М. : Мнемозина, 2007. – 315 с. : ил., стр.18.

Белотелов В.А. Пифагоровы тройки и их количество // Энциклопедия Нестеровых

Эта статья является ответом одному профессору – щипачу. Смотри, профессор, как это у нас в деревне делают.

Нижегородская область, г. Заволжье.

Требуется знание алгоритма решения диофантовых уравнений (АРДУ) и знание прогрессий многочленов.

ПЧ – простое число.

СЧ – составное число.

Пусть есть число N нечётное. Для любого нечётного числа, кроме единицы, можно составить уравнение.

р 2 + N = q 2 ,

где р + q = N, q – р = 1.

Например, для чисел 21 и 23 уравнениями будут, -

10 2 + 21 = 11 2 , 11 2 + 23 = 12 2 .

Если число N простое, данное уравнение единственное. Если число N составное, тогда можно составить подобных уравнений по числу пар сомножителей представляющих это число, включая 1 х N.

Возьмём число N = 45, -

1 х 45 = 45, 3 х 15 = 45, 5 х 9 = 45.

Мечталось, а нельзя ли уцепившись за это различие между ПЧ и СЧ найти метод их идентификации.

Введём обозначения;

Изменим нижнее уравнение, -

N = в 2 – а 2 = (в – а)(в + а).

Сгруппируем величины N по признаку в - а, т.е. составим таблицу.

Числа N были сведены в матрицу, -

Именно под эту задачу пришлось разбираться с прогрессиями многочленов и их матрицами. Всё оказалось напрасно, – ПЧ оборону держат мощно. Давайте в таблицу 1 введём столбец, где в - а = 1 (q - р = 1).

И ещё раз. Таблица 2 получилась в следствии попытки решения задачи об идентификации ПЧ и СЧ. Из таблицы следует, что для любого числа N, существует столько уравнений вида а 2 + N = в 2 , на сколько пар сомножителей можно разбить число N, включая сомножитель 1 х N. Кроме чисел N = ℓ 2 , где

ℓ - ПЧ. Для N = ℓ 2 , где ℓ - ПЧ, существует единственное уравнение р 2 + N = q 2 . О каком дополнительном доказательстве может идти речь, если в таблице перебраны меньшие множители из пар сомножителей, образующих N, от единицы до ∞. Таблицу 2 поместим в сундучок, а сундучок спрячем в чуланчике.

Вернёмся к теме заявленной в названии статьи.

Эта статья является ответом одному профессору – щипачу.

Обратился за помощью, – требовался ряд чисел, который не мог найти в интернете. Напоролся на вопросы типа, – "а за чем?", "а покажи метод". Был в частности задач вопрос, бесконечен ли ряд пифагоровых троек, "а как доказать?". Не помог он мне. Смотри, профессор, как это у нас в деревне делают.

Возьмем формулу пифагоровых троек, –

х 2 = у 2 + z 2 . (1)

Пропустим через АРДУ.

Возможны три ситуации:

I. х – нечётное число,

у – чётное число,

z – чётное число.

И есть условие х > у > z.

II. х – нечётное число,

у – чётное число,

z – нечётное число.

х > z > у.

III.х – чётное число,

у – нечётное число,

z – нечётное число.

х > у > z.

Начнём по порядку с I.

Введём новые переменные

Подставим в уравнение (1).

Сократим на меньшее переменное 2γ.

(2α – 2γ + 2к + 1) 2 = (2β – 2γ + 2к) 2 + (2к + 1) 2 .

Сократим на меньшее переменное 2β – 2γ с одновременным введением нового параметра ƒ, -

(2α – 2β + 2ƒ + 2к + 1) 2 = (2ƒ + 2к) 2 + (2к + 1) 2 (2)

Тогда, 2α – 2β = х – у – 1.

Уравнение (2) примет вид, –

(х – у + 2ƒ + 2к) 2 = (2ƒ + 2к) 2 + (2к + 1) 2

Возведём в квадрат, -

(х – у) 2 + 2(2ƒ + 2к)(х – у) + (2ƒ + 2к) 2 = (2ƒ + 2к) 2 + (2к + 1) 2 ,

(х – у) 2 + 2(2ƒ + 2к)(х – у) – (2к + 1) 2 = 0. (3)

АРДУ даёт через параметры соотношение между старшими членами уравнения, поэтому мы получили уравнение (3).

Не солидно заниматься подбором решений. Но, во – первых, деваться некуда, а во – вторых, этих решений нужно несколько, а бесконечный ряд решений мы сможем восстановить.

При ƒ = 1, к = 1, имеем х – у = 1.

При ƒ = 12, к = 16, имеем х – у = 9.

При ƒ = 4, к = 32, имеем х – у = 25.

Подбирать можно долго, но в конечном итоге ряд примет вид, -

х – у = 1, 9, 25, 49, 81, ….

Рассмотрим вариант II.

Введём в уравнение (1) новые переменные

(2α + 2к + 1) 2 = (2β + 2к) 2 + (2γ + 2к + 1) 2 .

Сократим на меньшее переменное 2 β, -

(2α – 2β + 2к + 1) 2 = (2α – 2β + 2к+1) 2 + (2к) 2 .

Сократим на меньшее переменное 2α – 2β, –

(2α – 2γ + 2ƒ + 2к + 1) 2 = (2ƒ + 2к + 1) 2 + (2к) 2 . (4)

2α – 2γ = х – z и подставим в уравнение (4).

(х – z + 2ƒ + 2к + 1) 2 = (2ƒ + 2к + 1) 2 + (2к) 2

(х – z) 2 + 2(2ƒ + 2к + 1)(х – z) + (2ƒ + 2к + 1) 2 = (2ƒ + 2к + 1) 2 + (2к) 2 (х – z) 2 + 2(2ƒ + 2к + 1)(х – z) – (2к) 2 = 0

При ƒ = 3, к = 4, имеем х – z = 2.

При ƒ = 8, к = 14, имеем х – z = 8.

При ƒ = 3, к = 24, имеем х – z = 18.

х – z = 2, 8, 18, 32, 50, ….

Нарисуем трапецию, -

Напишем формулу.

где n=1, 2,... ∞.

Случай III расписывать не будем, – нет там решений.

Для условия II набор троек будет таким:

Уравнение (1) представлено в виде х 2 = z 2 + у 2 для наглядности.

Для условия I набор троек будет таким:

В общей сложности расписано 9 столбцов троек, по пять троек в каждом. И каждый из представленных столбцов можно писать до ∞.

В качестве примера рассмотрим тройки последнего столбца, где х – у = 81.

Для величин х распишем трапецию, -

Напишем формулу, -

Для величин у распишем трапецию, -

Напишем формулу, -

Для величин z распишем трапецию, -

Напишем формулу, -

Где n = 1 ÷ ∞.

Как и обещано, ряд троек при х – у = 81 летит в ∞.

Была попытка для случаев I и II построить матрицы для величин х, у, z.

Выпишем из последних пяти столбцов величины х из верхних строк и построим трапецию.

Не получилось, а закономерность должна быть квадратичной. Чтобы всё было в ажуре, оказалось, что надо объединить столбцы I и II.

В случае II величины у, z снова поменяем местами.

Объединить удалось по одной причине, – карты хорошо легли в этой задаче, – повезло.

Теперь можно расписать матрицы для х, у, z.

Возьмём из последних пяти столбцов величины х из верхних строк и построим трапецию.

Всё нормально, можно строить матрицы, и начнём с матрицы для z.

Бегом в чуланчик за сундучком.

Итого: Кроме единицы, каждое нечётное число числовой оси участвует в образовании пифагоровых троек равным количеству пар сомножителей образующих данное число N, включая сомножитель 1 х N.

Число N = ℓ 2 , где ℓ - ПЧ, образует одну пифагорову тройку, если ℓ - СЧ, то на сомножителях ℓхℓ тройки не существует.

Построим матрицы для величин х, у.

Начнём работать с матрицей для х. Для этого натянем на неё координатную сетку из задачи по идентификации ПЧ и СЧ.

Нумерация вертикальных рядов нормирована выражением

Первый столбец уберём, т.к.

Матрица примет вид, -

Опишем вертикальные ряды, -

Опишем коэффициенты при "а", -

Опишем свободные члены, -

Составим общую формулу для "х", -

Если провести подобную работу для "у", получим, -

Можно подойти к этому результату и с другой стороны.

Возьмём уравнение, –

а 2 + N = в 2 .

Чуть преобразуем, –

N = в 2 – а 2 .

Возведём в квадрат, –

N 2 = в 4 – 2в 2 а 2 + а 4 .

К левой и правой части уравнения добавим по величине 4в 2 а 2 , -

N 2 + 4в 2 а 2 = в 4 + 2в 2 а 2 + а 4 .

И окончательно, –

(в 2 + а 2) 2 = (2ва) 2 + N 2 .

Пифагоровы тройки составляются так:

Рассмотрим пример с числом N = 117.

1 х 117 = 117, 3 х 39 = 117, 9 х 13 = 117.

Вертикальные столбцы таблицы 2 пронумерованы величинами в – а, тогда как вертикальные столбцы таблицы 3 пронумерованы величинами х – у.

х – у = (в – а) 2 ,

х = у + (в – а) 2 .

Составим три уравнения.

(у + 1 2) 2 = у 2 + 117 2 ,

(у + 3 2) 2 = у 2 + 117 2 ,

(у + 9 2) 2 = у 2 + 117 2 .

х 1 = 6845, у 1 = 6844, z 1 = 117.

х 2 = 765, у 2 = 756, z 2 = 117 (х 2 = 85, у 2 = 84, z 2 = 13).

х 3 = 125, у 3 = 44, z 3 = 117.

Сомножители 3 и 39 не являются взаимно простыми числами, поэтому одна тройка получилась с коэффициентом 9.

Изобразим выше написанное в общих символах, -

В данной работе всё, включая пример на расчёт пифагоровых троек с числом

N = 117, привязано к меньшему сомножителю в - а. Явная дискриминация по отношению к сомножителю в + а. Исправим эту несправедливость, – составим три уравнения с сомножителем в + а.

Вернёмся к вопросу об идентификации ПЧ и СЧ.

Много что было совершено в этом направлении и на сегодняшний день через руки дошла следующая мысль, – уравнения идентификации, да такого чтобы и сомножители определить, не существует.

Допустим найдено соотношение F = а,в (N).

Есть формула

Можно избавиться в формуле F от в и получится однородное уравнение n – ой степени относительно а, т.е. F = а(N).

При любой степени n данного уравнения найдётся число N имеющее m пар сомножителей, при m > n.

И как следствие, однородное уравнение n степени должно иметь m корней.

Да быть такого не может.

В данной работе числа N рассматривались для уравнения х 2 = у 2 + z 2 , когда они находятся в уравнении на месте z. Когда N на месте х, - это уже другая задача.

С уважением Белотелов В.А.

Обучающая : изучить ряд пифагоровых троек, разработать алгоритм их применения в различных ситуациях, составить памятку по их использованию.
  • Воспитательная : формирование сознательного отношения к учебе, развитие познавательной активности, культуры учебного труда.
  • Развивающая : развитие геометрической, алгебраической и числовой интуиции, сообразительности, наблюдательности, памяти.
  • Ход урока

    I. Организационный момент

    II. Объяснение нового материала

    Учитель: Загадка притягательной силы пифагоровых троек давно волнует человечество. Уникальные свойства пифагоровых троек объясняют их особую роль в природе, музыке, математике. Пифагорово заклинание, теорема Пифагора, остается в мозге миллионов, если не миллиардов, людей. Это – фундаментальная теорема, заучивать которую, заставляют каждого школьника. Несмотря на то, что теорема Пифагора доступна пониманию десятилетних, она является вдохновляющим началом проблемы, при решении которой потерпели фиаско величайшие умы в истории математики, теорема Ферма. Пифагор с острова Самос (см. Приложение 1 , слайд 4 )был одной из наиболее влиятельных и тем не менее загадочных фигур в математике. Поскольку достоверных сообщений о его жизни и работе не сохранилось, его жизнь оказалась окутанной мифами и легендами, и историкам бывает трудно отделить факты от вымысла. Не подлежит сомнению, однако, что Пифагор развил идею о логике чисел и что именно ему мы обязаны первым золотым веком математики. Благодаря его гению, числа перестали использоваться только для счета и вычислений и были впервые оценены по достоинству. Пифагор изучал свойства определенных классов чисел, соотношения между ними и фигуры, которые образуют числа. Пифагор понял, что числа существуют независимо от материального мира, и поэтому на изучении чисел не сказывается неточность наших органов чувств. Это означало, что Пифагор обрел возможность открывать истины, независимые от чьего-либо мнения или предрассудка. Истины более абсолютные, чем любое предыдущее знание. На основе изученной литературы, касающейся пифагоровых троек, нас будет интересовать возможность применения пифагоровых троек при решении задач тригонометрии. Поэтому мы поставим перед собой цель: изучить ряд пифагоровых троек, разработать алгоритм их применения, составить памятку по их использованию, провести исследование по их применению в различных ситуациях.

    Треугольник (слайд 14 ), стороны которого равны пифагоровым числам, является прямоугольным. Кроме того, любой такой треугольник является героновым, т.е. таким, у которого все стороны и площадь являются целочисленными. Простейший из них – египетский треугольник со сторонами (3, 4, 5).

    Составим ряд пифагоровых троек путем домножения чисел (3, 4, 5) на 2, на 3, на 4. Получим ряд пифагоровых троек, отсортируем их по возрастанию максимального числа, выделим примитивные.

    (3, 4, 5), (6, 8, 10), (5, 12, 13) , (9, 12, 13), (8, 15, 17) , (12, 16, 20), (15, 20, 25), (7, 24, 25) , (10, 24, 26), (20, 21, 29) , (18, 24, 30), (16, 30, 34), (21, 28, 35), (12, 35, 37), (15, 36, 39), (24, 32, 40), (9, 40, 41) , (14, 48, 50), (30, 40, 50).

    III. Ход урока

    1. Покрутимся вокруг задач:

    1) Используя соотношения между тригонометрическими функциями одного и того же аргумента найдите, если

    известно, что .

    2) Найдите значение тригонометрических функций угла?, если известно, что:

    3) Система тренировочных задач по теме “Формулы сложения”

    зная, что sin = 8/17, cos = 4/5, и – углы первой четверти, найдите значение выражения:

    зная, что и – углы второй четверти, sin = 4/5, cos = – 15/17, найдите: .

    4) Система тренировочных задач по теме “Формулы двойного угла”

    a) Пусть sin = 5/13, – угол второй четверти. Найдите sin2, cos2, tg2, ctg2.

    b) Известно, что tg? = 3/4, – угол третьей четверти. Найдите sin2, cos2, tg2, ctg2.

    c) Известно, что , 0 < < . Найдите sin, cos, tg, ctg.

    d) Известно, что , < < 2. Найдите sin, cos, tg.

    e) Найдите tg( + ), если известно что cos = 3/5, cos = 7/25, где и – углы первой четверти.

    f) Найдите , – угол третьей четверти.

    Решаем задачу традиционным способом с использованием основных тригонометрических тождеств, а затем решаем эти же задачи более рациональным способом. Для этого используем алгоритм решения задач с использованием пифагоровых троек. Составляем памятку решения задач с использованием пифагоровых троек. Для этого вспоминаем определение синуса, косинуса, тангенса и котангенса, острого угла прямоугольного треугольника, изображаем его, в зависимости от условий задачи на сторонах прямоугольного треугольника правильно расставляем пифагоровы тройки (рис. 1 ). Записываем соотношение и расставляем знаки. Алгоритм выработан.

    Рисунок 1

    Алгоритм решения задач

    Повторить (изучить) теоретический материал.

    Знать наизусть примитивные пифагоровы тройки и при необходимости уметь конструировать новые.

    Применять теорему Пифагора для точек с рациональными координатами.

    Знать определение синуса, косинуса, тангенса и котангенса острого угла прямоугольного треугольника, уметь изобразить прямоугольный треугольник и в зависимости от условия задачи правильно расставить пифагоровы тройки на сторонах треугольника.

    Знать знаки синуса, косинуса, тангенса и котангенса в зависимости от их расположения в координатной плоскости.

    Необходимые требования:

    1. знать, какие знаки синус, косинус, тангенс, котангенс имеют в каждой из четвертей координатной плоскости;
    2. знать определение синуса, косинуса, тангенса и котангенса острого угла прямоугольного треугольника;
    3. знать и уметь применять теорему Пифагора;
    4. знать основные тригонометрические тождества, формулы сложения, формулы двойного угла, формулы половинного аргумента;
    5. знать формулы приведения.

    С учетом вышеизложенного заполним таблицу (таблица 1 ). Ее нужно заполнять, следуя определению синуса, косинуса, тангенса и котангенса или с использованием теоремы Пифагора для точек с рациональными координатами. При этом постоянно необходимо помнить знаки синуса, косинуса, тангенса и котангенса в зависимости от их расположения в координатной плоскости.

    Таблица 1

    Тройки чисел sin cos tg ctg
    (3, 4, 5) I ч.
    (6, 8, 10) II ч. - -
    (5, 12, 13) III ч. - -
    (8, 15, 17) IV ч. - - -
    (9, 40, 41) I ч.

    Для успешной работы можно воспользоваться памяткой применения пифагоровых троек.

    Таблица 2

    (3, 4, 5), (6, 8, 10), (5, 12, 13) , (9, 12, 13), (8, 15, 17) , (12, 16, 20), (15, 20, 25), (7, 24, 25) , (10, 24, 26), (20, 21, 29) , (18, 24, 30), (16, 30, 34), (21, 28, 35), (12, 35, 37), (15, 36, 39), (24, 32, 40), (9, 40, 41) , (14, 48, 50), (30, 40, 50), …

    2. Решаем вместе .

    1) Задача: найдите cos, tg и ctg, если sin = 5/13, если – угол второй четверти.


    Close