Этот текст представляет новые результаты в области неврологии и решение многих нерешенных проблем в физике. Он не касается вопросов метафизики и основан на научно проверяемых данных, но затрагивает философские темы, связанные с жизнью, смертью и происхождением вселенной.
Учитывая многослойность и насыщенность информации, может потребоваться прочесть его несколько раз, чтобы понять, несмотря на наши усилия, упростить сложные научные понятия.




Глава 1
Бог - в нейронах








Человеческий мозг - это сеть примерно ста миллиардов нейронов. Различные ощущения формируют нервные связи, воспроизводящие различные эмоции. В зависимости от стимуляции нейронов, одни связи становятся прочнее и эффективнее, а другие слабеют. Это называется нейропластичность .

Тот, кто обучается музыке, создает более сильные нервные связи между двумя полушариями головного мозга, чтобы развивать музыкальное творчество. Через обучение можно развить практически любой талант или навык.

Рудигер Гамм считал себя безнадежным студентом и не справлялся даже с элементарной математикой. Он стал развивать свои способности и превратился в человеческий калькулятор, способный на чрезвычайно сложные вычисления. Рациональность и эмоциональная устойчивость работают точно так же. Нервные связи можно укрепить.

Когда вы чем-либо занимаетесь, вы физически меняете свой мозг, чтобы достигать лучших результатов. Так как это – главный и основной механизм мозга, самосознание может значительно обогатить наш жизненный опыт.



Социальная неврология



Особые нейроны и нейромедиаторы, такие как норэпинефрин, вызывают защитный механизм, когда мы чувствуем, что наши мысли необходимо защитить от влияния извне. Если чье-то мнение отличается от нашего, в мозг поступают те же химические вещества, что обеспечивают наше выживание в опасных ситуациях.








В этом защитном состоянии более примитивная часть мозга вмешивается в рациональное мышление, и лимбическая система может блокировать нашу рабочую память, физически вызывая «ограниченность мышления».

Это можно видеть при запугивании, или при игре в покер, или когда кто-то проявляет упрямство в споре.

Какой бы ценной ни была идея, в таком состоянии мозг не способен ее обработать. На нейронном уровне он воспринимает ее как угрозу, даже если это безобидные мнения или факты, с которыми в ином случае мы могли бы согласиться.

Но когда мы выражаем себя, и наши взгляды ценятся, уровень защитных веществ в мозгу снижается, и передача дофамина активирует нейроны поощрения, и мы ощущаем свою силу и уверенность. Наши убеждения существенно влияют на химию нашего тела. Именно на этом основан эффект плацебо. Самооценка и уверенность в себе связаны с нейромедиатором серотонином.

Сильная нехватка его часто приводит к депрессии, саморазрушительному поведению и даже самоубийству. Когда общество нас ценит, это повышает уровень дофамина и серотонина в мозге и позволяет нам освободиться от эмоциональной фиксации и повысить уровень самосознания.



Зеркальные нейроны и сознание



Социальная психология часто обращается к базовой потребности человека «найти свое место» и называет это «нормативное социальное влияние.» По мере взросления наш моральный и этический компас почти полностью формируется внешней средой. Таким образом, наши действия часто исходят из того, как нас оценивает общество.








Но новые данные в области неврологии дают нам более четкое понимание культуры и индивидуальности. Новые неврологические исследования подтвердили существование эмпатических зеркальных нейронов.

Когда мы испытываем эмоции или выполняем действия, срабатывают определенные нейроны. Но когда мы видим, как это делает кто-то другой или представляем себе это, срабатывают многие из тех же нейронов, словно мы делаем это сами. Эти эмпатические нейроны связывают нас с другими людьми и позволяют чувствовать то, что чувствуют другие.

Так как эти же нейроны реагируют на наше воображение, мы получаем от них эмоциональную отдачу так же, как от другого человека. Эта система дает нам возможность самоанализа.

Зеркальные нейроны не делают различий между собой и другими. Поэтому мы так зависим от оценки окружающих и желания соответствовать.

Мы все время подвержены двойственности между тем, как мы видим себя, и как нас воспринимают другие. Это может мешать нашей индивидуальности и самооценке.






Снимки мозга показывают, что испытываем эти отрицательные эмоции еще до того, как их осознаем. Но когда мы обладаем самосознанием, мы можем изменить неправильные эмоции, потому что можем контролировать свои мысли, их вызывающие.

Это нейрохимическое следствие того, как воспоминания ослабевают, и как они восстанавливаются через синтез белка.

Самоанализ сильно влияет на то, как работает мозг.Он активизирует неокортикальные области саморегуляции, которые позволяют нам четко контролировать собственные чувства. Всякий раз, когда мы это делаем, наша рациональность и эмоциональная стабильность усиливаются. Без самоконтроля большинство наших мыслей и действий импульсивны, и то, что мы реагируем случайно и не делаем сознательный выбор,

инстинктивно раздражает нас.






Чтобы устранить это, мозг стремится оправдать наше поведение и физически переписывает воспоминания через реконсолидацию памяти, заставляя нас верить, что мы контролировали свои действия. Это называется ретроспективная рационализация, которая оставляет большинство наших отрицательных эмоций нерешенными, и они могут вспыхнуть в любое время. Они питают внутренний дискомфорт, в то время как мозг продолжает оправдывать наше иррациональное поведение. Всё это сложное и почти шизофреническое поведение подсознания - работа обширных параллельно распределенных систем в нашем мозге.



Сознание не имеет определенного центра. Видимое единство связано с тем, что каждая отдельная цепь активируется и проявляет себя в конкретный момент времени. Наш опыт постоянно меняет наши нервные связи, физически меняя параллельную систему нашего сознания. Прямое вмешательство в это может иметь сюрреалистические эффекты, что поднимает вопрос о том, что такое сознание и где оно расположено.



Если левое полушарие мозга отделить от правого, как в случае с пациентами, перенесшими разделение мозга, вы сохраните способность говорить и думать с помощью левого полушария, в то время как познавательные способности правого полушария будут сильно ограничены. Левое полушарие не будет страдать от отсутствия правого, хотя это серьезно изменит ваше восприятие.

Например, вы не сможете описать правую сторону чьего-либо лица, но вы заметите этого, не увидите в этом проблему и даже не поймете, что что-то изменилось. Так как это затрагивает не только ваше восприятие реального мира, но и ваши мысленные образы, это не просто проблема восприятия, но фундаментальное изменение сознания.



Бог - в нейронах



Каждый нейрон имеет электрическое напряжение, которое меняется, когда ионы

проникают в клетку или покидают ее. Когда напряжение достигает определенного уровня, нейрон направляет электросигнал в другие клетки, где процесс повторяется.

Когда многие нейроны испускают сигнал одновременно, мы можем измерить это в виде волны.

Мозговые волны отвечают почти за всё, что происходит в нашем мозгу, включая память, внимание и даже интеллект.

Колебания различной частоты классифицируются как альфа-, бета- и гамма-волны. Каждый тип волн связан с различными задачами. Волны позволяют клеткам мозга настроиться на частоту, соответствующую задаче, игнорируя посторонние сигналы.

Так же, как радиоприемник настраивается на волну радиостанции. Передача информации между нейронами становится оптимальной, когда их деятельность синхронизирована.

Вот почему мы испытываем когнитивный диссонанс - раздражение, вызванное двумя несовместимыми идеями. Воля - это стремление уменьшить диссонанс между каждой из активных нейронных цепей.



Эволюция может рассматриваться как такой же процесс, где природа пытается адаптироваться то есть, «резонировать» с окружающей средой. Так она развилась до уровня, где обрела самосознание и начала задумываться о собственном существовании.

Когда человек сталкивается с парадоксом стремления к цели и мысли, что существование бессмысленно, происходит когнитивный диссонанс.






Поэтому многие люди обращаются к духовности и религии, отвергая науку, которая не способна дать ответ на экзистенциальные вопросы: кто я? и для чего я есть?



Я...



«Зеркальные нейроны не делают различий между собой и другими. „

Левое полушарие во многом отвечает за создание стройной системы убеждений, что поддерживает чувство непрерывности нашей жизни.

Новый опыт сравнивается с существующей системой убеждений, и если не вписывается в нее, то просто отвергается. Балансом выступает правое полушарие мозга, играющее противоположную роль.



В то время как левое полушарие стремится к сохранению модели, правое - непрерывно

подвергает сомнению статус-кво. Если расхождения слишком велики, правое полушарие заставляет пересмотреть наше мировоззрение. Но если наши убеждения слишком сильны, правое полушарие может не преодолеть нашего отказа. Это может создать большие сложности при отражении других.

Когда нервные связи, определяющие наши убеждения, не развиты или не активны, наше сознание, единство всех активных цепей, заполняется деятельностью зеркальных нейронов, так же, как когда мы голодны, наше сознание заполнено нейронными процессами, связанными с питанием.



Это не результат центрального “Я», отдающего команды различным областям мозга.

Все части мозга могут быть активными и неактивными и взаимодействовать без центрального ядра. Так же, как пиксели на экране могут сложиться в узнаваемый образ, группа нейронных взаимодействий может выразить себя как сознание.

В любой момент мы представляем собой другой образ. Когда мы отражаем других, когда мы голодны, когда мы смотрим этот фильм. Каждую секунду мы становимся другим человеком, проходя через разные состояния.

Когда мы смотрим на себя через зеркальные нейроны, мы создаем идею индивидуальности.

Но когда мы делаем это с научным пониманием, мы видим нечто совершенно иное.






Нейронные взаимодействия, создающие наше сознание, выходят далеко за пределы наших нейронов. Мы - результат электрохимических взаимодействий между полушариями мозга и наших чувств, связывающих наши нейроны с другими нейронами в нашей среде. Нет ничего внешнего. Это не гипотетическая философия, это основное свойство зеркальных нейронов, которое позволяет нам понять самих себя через других.



Считать эту нейронную деятельность своей собственной, исключая окружение, было бы неправильно. Эволюции также отражает наши стороны сверхорганизма, где наше выживание, как приматов, зависело от коллективных способностей.

Со временем развились неокортикальные области, позволяющие менять инстинкты и подавлять гедонистические импульсы ради блага группы. Наши гены стали развивать взаимное социальное поведение в структурах сверхорганизма, тем самым отказавшись от идеи «выживания сильнейшего».



Мозг действует наиболее эффективно, когда нет диссонанса между продвинутыми областями мозга и более старыми и примитивными. То, что мы называем «эгоистичными наклонностями» - лишь ограниченное толкование эгоистичного поведения, когда характеристики человека воспринимаются через неверную парадигму индивидуальности…

… вместо научного взгляда на то, кто мы есть - мгновенный вечно меняющийся образ

единого целого, не имеющего центра.



Психологическим следствием этой системы убеждений является самосознание без привязки к мнимому «Я», что приводит к повышению ясности ума, общественной сознательности, самоконтроля и того, что часто называется «быть здесь и сейчас».






Бытует мнение, что нам необходима история, хронологический взгляд на нашу жизнь, чтобы формировать моральные ценности.

Но наше современное понимание эмпатической и социальной природы мозга показывает, что чисто научный взгляд, без привязки к индивидуальности и «истории», дает гораздо более точную, конструктивную и этичную систему понятий, чем наши разрозненные ценности.



Это логично, потому что наша обычная склонность определять себя как воображаемую индивидуальную константу толкает мозг к когнитивным расстройствам, таким, как навязчивые стереотипы и потребность возлагать ожидания.






Стремление классифицировать лежит в основе всех наших форм взаимодействия. Но классифицируя эго как внутреннее, а среду - как внешнее, мы ограничиваем собственные нейрохимические процессы и испытываем мнимое чувство разобщенности.

Личностный рост и его побочные эффекты, такие как счастье и удовлетворение, стимулируются, когда мы не подвержены стереотипам в нашем взаимодействии.



Мы можем иметь различные взгляды и не соглашаться друг с другом, но взаимодействия, которые принимают нас такими, как есть, без осуждения, становятся нейропсихологическими катализаторами, которые стимулируют мозг

принимать других и принимать рационально доказуемые системы убеждений без когнитивного диссонанса.

Стимуляция этой нейронной деятельности и взаимодействия освобождает от нужды в отвлекающих факторах и развлечениях и создает циклы конструктивного поведения в нашей среде. Социологи обнаружили, что такие явления, как курение и переедание, эмоции и идеи распространяются в обществе так же, как передаются электрические сигналы нейронов, когда их деятельность синхронизирована.






Мы - глобальная сеть нейрохимических реакций. Саморазвивающийся цикл оценки и признания, поддерживаемый ежедневными решениями - это цепная реакция, которая в конечном итоге определяет нашу коллективную способность преодолеть мнимые разногласия и взглянуть на жизнь в ее вселенской структуре.

Глава 2
Вселенская структура




За время исследований Чирена я сделал упрощенный, но всесторонний обзор его текущих результатов.

Это одна из интерпретаций работы по объединению квантовой физики и теории относительности .

Данная тема сложна, и, возможно, будет трудна для понимания. Также она содержит некоторые философские выводы, которые будут затронуты в эпилоге.



За последнее столетие было много поразительных достижений, которые привели к изменению научной системы понимания мира. Теория относительности Эйнштейна показала, что время и пространство образуют единую ткань. А Нильс Бор выявил базовые компоненты вещества, благодаря квантовой физике - области, которая существует только как «абстрактное физическое описание».








После этого Луи де Бройль открыл, что всё вещество, а не только фотоны и электроны, обладает квантовым корпускулярно- волновым дуализмом . Эти привело к появлению новых школ мысли о природе реальности, а также популярных метафизических и псевдонаучных теорий.

Например, что человеческий разум может управлять вселенной через позитивное мышление. Эти теории привлекательны, но они не поддаются проверке и могут препятствовать научному прогрессу.



Законы специальной и общей теории относительности Эйнштейна применяются в современных технологиях, например, спутниках GPS, где точность расчетов может отклоняться более чем на 10 км в день, если не учесть такие последствия, как замедление времени. То есть, для движущихся часов время идет медленнее, чем для неподвижных.








Другие эффекты теории относительности - это сокращение длины для движущихся объектов и относительность одновременности, из-за чего невозможно с точностью утверждать, что два события происходят в одно и то же время, если они разделены в пространстве.

Ничто не движется быстрее скорости света. Это означает, что если трубу длиной 10 световых секунд толкнуть вперед, пройдет 10 секунд прежде, чем действие произойдет на другой стороне. Без интервала времени в 10 секунд труба не существует в полном объеме.

Дело не в ограниченности наших наблюдений, а в прямом следствии теории относительности, где время и пространство взаимосвязаны, и одно не может существовать без другого.

Квантовая физика дает математическое описание многих вопросов корпускулярно- волнового дуализма и взаимодействия энергии и материи. Она отличается от классической физики, прежде всего, на атомном и субатомном уровне. Эти математические формулировки абстрактны, и их выводы часто неинтуитивны.



Квант - это минимальная единица любой физической сущности, участвующей во взаимодействии. Элементарные частицы – основные компоненты вселенной. Это частицы, из которых состоят все другие частицы. В классической физике мы всегда можем разделить объект на более мелкие части, в квантовой - это невозможно.

Поэтому квантовый мир представляет собой множество уникальных явлений, необъяснимых по классическим законам. Например, квантовая сцепленность , фотоэффект , комптоновское рассеяние и многое другое.








Квантовый мир имеет много необычных интерпретаций. Среди наиболее широко признанных - копенгагенская интерпретация и многомировая интерпретация. В настоящее время набирают силу альтернативные интерпретации, такие как «голографическая вселенная».



Уравнения де Бройля



Хотя квантовая физика и законы относительности Эйнштейна одинаково необходимы для научного понимания вселенной, есть много нерешенных научных проблем и пока нет объединяющей теории.

Некоторые из текущих вопросов: Почему наблюдаемой материи во вселенной больше, чем антиматерии? Какова природа оси времени? Каково происхождение массы?

Одними из важнейших ключей к разгадке этих проблем являются уравнения де Бройля, за которые он был удостоен Нобелевской премии по физике.

Эта формула показывает, что вся материя обладает корпускулярно-волновым дуализмом, то есть, в одних случаях ведет себя как волна, а в других - как частица. Формула сочетает в себе уравнение Эйнштейна E = mc^2 с квантовой природой энергии.



Экспериментальные доказательства включают в себя интерференцию молекул фуллерена C60 в эксперименте с двумя щелями. Тот факт, что само наше сознание состоит из квантовых частиц, является предметом многочисленных мистических теорий.



И хотя отношения между квантовой механикой и сознанием едва ли так волшебны, как утверждают эзотерические фильмы и книги, выводы из этого весьма серьезны.

Так как уравнения де Бройля применяются ко всей материи, мы можем утверждать, что C = hf, где С - сознание, h - постоянная Планка, и f - частота.«С» отвечает за то, что мы воспринимаем как «сейчас», квантовая, то есть минимальная, единица взаимодействия.

Сумма всех моментов «C» вплоть до текущего момента - это то, что формирует наше видение жизни. Это не философское или теоретическое утверждение, а прямое следствие квантовости всей материи и энергии.

Формула показывает, что жизнь и смерть являются абстрактными совокупностями «C».

Другое следствие уравнений де Бройля - в том, что темп колебания материи или энергии и поведение ее как волны или частицы зависит от частоты системы отсчета.

Повышения частоты из-за скорости соотносятся с другими и приводят к таким явлениям, как замедление времени.

Причина этого - в том, что восприятие времени не меняется относительно системы отсчета, где пространство и время - это свойство квантов, а не наоборот.



Антиматерия и невозмущенное время



Большой адронный коллайдер. Швейцария

Античастицы создаются везде во вселенной, где происходят высокоэнергетические столкновения между частицами. Этот процесс искусственно моделируется в ускорителях частиц.

Одновременно с материей создается и антиматерия. Таким образом, недостаток антиматерии во вселенной до сих пор остается одним из крупнейший нерешенных вопросов физики.

Захватывая античастицы электромагнитными полями, мы можем исследовать их свойства. Квантовые состояния частиц и античастиц взаимно заменимы, если применить к ним операторы зарядового сопряжения ©, четности (Р) и обращения времени (Т).

То есть, если некий физик, состоящий из антивещества, будет проводить эксперименты в лаборатории, также из антивещества, используя химические соединения и вещества, состоящие из античастиц, он получит точно такие же результаты, как и его «вещественный» коллега. Но если они объединятся, произойдет огромный выброс энергии, пропорциональный их массе.

Недавно в лаборатории Ферми открыли, что такие кванты как мезоны со скоростью три триллиона раз в секунду переходят из вещества в антивещество и обратно.

Рассматривая вселенную в квантовой системе отсчета «С», необходимо принимать во внимание все экспериментальные результаты, применимые к квантам. Включая то, как материя и антиматерия создаются в ускорителях частиц, и как мезоны переходят из одного состояния в другое.



Применительно к «C» это имеет серьезные последствия. С квантовой точки зрения каждое мгновение «С» имеет и анти-С. Это объясняет отсутствие симметрии, то есть, антивещества во вселенной и также связано с произвольным выбором излучателя и поглотителя в теории поглощения Уилера-Фейнмана.

Невозмущенное время T в принципе неопределенности - это время или цикл, необходимый для существования квантов.

Так же, как в случае мезонов, границей нашего личного восприятия времени, то есть, диапазона текущего момента, является переход «C» в «анти-С». Этот момент самоаннигиляции и его толкование «С» заключен в рамки абстрактной оси времени.



Если определить взаимодействие и рассмотреть основные свойства корпускулярно-волнового дуализма кванта, все взаимодействия состоят из интерференции и резонанса.

Но так как этого не достаточно, чтобы объяснить фундаментальные силы, необходимо использовать различные модели. Это включает стандартную модель, которая выступает посредником между динамикой известных субатомных частиц через носители силы и общей теорией относительности, которая описывает макроскопические явления, такие, как орбиты планет, которые следуют эллипсу в пространстве и спирали в пространстве-времени. Но модель Эйнштейна не применима на квантовом уровне, и стандартная модель нуждается в дополнительных носителях силы, чтобы объяснить происхождение массы. Объединение двух моделей или Теория всего

является предметом многих, пока безуспешных исследований.



Теория всего



Квантовая механика – это чисто математические описания, чьи практические выводы часто противоречат интуиции. Классические понятия, такие, как длина, время, масса и энергия могут быть описаны аналогично.

Опираясь на уравнения де Бройля, мы можем заменить эти понятия на абстрактные векторы. Этот вероятностный подход к основным существующим концепциям в физике позволяет объединить квантовую механику с теорией относительности Эйнштейна.



Уравнения де Бройля показывают, что все системы отсчета являются квантовыми, включая всю материю и энергию. Ускорители частиц показали, что материя и антиматерия всегда создаются одновременно.

Парадокс того, как реальность появляется из абстрактных взаимоуничтожаемых компонентов, можно объяснить, используя кванты в качестве системы отсчета.

Проще говоря, мы должны взглянуть на вещи глазами фотона. Система отсчета всегда является квантовой и определяет, как квантуется пространство-время.

Когда система «увеличивается» или «уменьшается», то же самое происходит с пространством-временем. В квантовой механике это математически описывается как амплитуда вероятности волновой функции, а в теории Эйнштейна - как замедление времени и сокращение длины.

Для квантовой системы отсчета масса и энергия могут быть определены только как абстрактные вероятности или, если быть более конкретными и создать математическую основу - как векторы, существующие только тогда, когда мы предполагаем ось времени. Они могут определяться как интерференция или резонанс с системой отсчета, которая определяет минимальную единицу или пространственно-временную константу «с», эквивалентную постоянной Планка в квантовой механике.

Эксперименты показывают, что преобразование материи в энергию через антиматерию порождает гамма-лучи с противоположным импульсом. То, что кажется преобразованием, является соотношением между противоположными векторами, интерпретируемыми как расстояние и время, материя и антиматерия, масса и энергия, или интерференция и резонанс в пределах абстрактной оси времени «C».

Сумма противоположных векторов всегда равна нулю. Именно это является причиной симметрии или законов сохранения в физике или того, почему при скорости «с» время и пространство равны нулю из-за сокращения длины и замедления времени. Следствием этого является принцип неопределенности Гейзенберга, который утверждает, что некоторые пары физических свойств, например, положение и импульс, нельзя знать одновременно с высокой точностью.



В некотором смысле, отдельная частица является собственным полем. Это не объясняет наше чувство непрерывности, где «С» уничтожает само себя в пределах собственного необходимого диапазона. Но когда эти векторы экспоненциально усилены или ускорены относительно оси времени и в ее пределах, основные математические алгоритмы, описывающие фундаментальные силы, могут породить непрерывную реальность

из абстрактных компонентов.

Поэтому уравнения гармонического движения используются во многих областях физики, касающихся периодических явлений, например, в квантовой механике и электродинамике. И поэтому принцип эквивалентности Эйнштейна, из которого выводится модель пространства-времени, утверждает, что нет никакой разницы между гравитацией и ускорением.

Потому что гравитация является силой только при рассмотрении ее в колеблющейся системе отсчета.

Это иллюстрирует логарифмическая спираль, которая сводится к винтовой спирали в системе отсчета, заставляющей объекты вращаться и двигаться по орбитам. Для примера, два растущих яблока в растущей системе отсчета выглядят, словно они притягивают друг друга, в то время как размер кажется неизменным.

Противоположное возникает при интерференции. Проще говоря, увеличение или уменьшение размера объектов по мере нашего приближения или отдаления определяется смещением системы отсчета, как радио, которое настраивается на различные волны, чтобы поймать радиостанцию.



Это также применимо к силе тяжести. По сути, независимо от любой системы отсчета, фундаментальных сил не существует. Все взаимодействия в нашей абстрактной непрерывности можно математически описать через интерференцию и резонанс, если принята во внимание вечно меняющаяся и колеблющаяся минимальная единица или квант.

Экспериментальное доказательство включает невидимый эффект в стандартной модели, когда мы видим действие сил, но не носители силы.



Квантовая суперпозиция



Непрерывность реальности не требует, чтобы кванты имели последовательность во времени. Квант не является субъектом любого понятия пространства и времени и может одновременно занимать все его возможные квантовые состояния. Это называется квантовой суперпозицией и продемонстрировано, например, в эксперименте с двумя щелями или квантовой телепортации, где каждый электрон во вселенной может быть одним и тем же электроном. Единственное требование для абстрактной оси времени и последовательной непрерывности реальности - это алгоритм описания модели или абстрактная последовательность векторов.

Так как эта непрерывность определяет нашу способность к самосознанию, это подчиняет нас ее математическим следствиям - фундаментальным законам физики.

Взаимодействие - это просто толкование абстрактной модели. Именно поэтому квантовая механика дает только математические описания - она может лишь описать модели внутри бесконечных вероятностей.

Когда вероятность выражается как «C», информация, необходимая для описания текущего момента, или вероятностный диапазон «C», также воплощает собой ось времени. Природа оси времени является одним из крупнейших нерешенных вопросов физики, что привело ко многим новым популярным интерпретациям.

Например, голографический принцип - часть квантовой гравитациии теории струн - предполагает, что всю вселенную можно рассматривать как всего лишь двухмерную информационную структуру.



Время



Мы традиционно связываем понятие оси времени с последовательностью событий, которые мы переживаем через последовательность кратковременных и долговременных воспоминаний. Мы можем иметь воспоминания только о прошлом, но не будущем, и мы всегда полагали, что это отражает течение времени.

Ученые начали сомневаться в этой логике, только когда открытия в квантовой механике продемонстрировали, что некоторые явления не связаны с нашим понятием времени, и что наши представления о времени - всего лишь восприятие изменений наблюдаемых параметров.

Это также отражается в замедлении времени и сокращении длины, что является одной из причин, по которым Эйнштейн установил, что время и пространство - это единая ткань.

В абсолютном смысле, понятие времени не отличается от понятия расстояния.

Секунды равны световым секундам, но взаимно исключают друг друга. Проще говоря: так как расстояние и время противоположны, течение времени можно толковать как расстояние, пройденное стрелками часов, так как они движутся в направлении, противоположном времени.

Двигаясь вперед в расстоянии, они фактически движутся назад в так называемом времени. Именно поэтому каждая минимальная единица опыта немедленно поглощается вечным «сейчас».

Это толкование устраняет разногласие между коллапсом волновой функции и квантовой декогеренцией. Такие понятия, как «жизнь» и «смерть» - это чисто интеллектуальные конструкции. И любые религиозные рассуждения о загробной жизни, происходящей в мире, неподвластном математическим законам этой реальности, также вымышлены.



Еще одно важное следствие - в том, что теория Большого взрыва, где вселенная происходит из одной точки - это недоразумение. Традиционное представление пространства-времени где пространство является трехмерным, а время играет роль четвертого измерения - неправильно. Если мы хотим изучить происхождение вселенной, мы должны смотреть вперед, так как вектор времени «С» противоположен вектору расстояния, с которого мы воспринимаем расширяющуюся вселенную. Хотя эта временнАя карта вселенной даст лишь абстрактные понятия без учета ее квантовой основы.



Экспериментальные доказательства включают ускорение расширения вселенной, а также обратную или регрессивную метрику черных дыр и многие проблемы, связанные

с теорией Большого взрыва, например, проблема горизонта.



Неврологические следствия



Эти умозаключения могут поднимать вопросы о свободной воле, так как кажется, что в нашем восприятии времени сначала происходит действие, а потом осознание.

Большинство исследований, проливающих свет на этот вопрос, показывают, что действие действительно происходит до его осознания. Но детерминистская точка зрения опирается на ошибочное представление о времени, что показывают математические описания вероятности в квантовой механике.



Эти толкования будут важны для будущих неврологических исследований, так как они показывают, что любая нейронная цепь - это вектор, определяющий когнитивный диссонанс и интерференцию или резонанс в «С». Способность понимать и сознательно изменять эти векторы, обретенная за миллиарды лет эволюции, подтверждает, насколько важны наши системы убеждений для расширения нашего осознания, и как они влияют на нашу рабочую память, которая отвечает за нашу способность, устанавливать связи, и за нервные процессы, которые формируют смысл. Это также объясняет, что для искусственного сознания потребуется сеть

независимых процессоров, а не линейная последовательность сложных алгоритмов.



Ограниченное толкование



Единая теория Athene является решением, объединяющим квантовую физику и теорию относительности. Хотя она отвечает на многие вопросы физики, перечисленные здесь, это мое ограниченное толкование первых месяцев его научного исследования.

Независимо от итогов, становится ясно, что мы вступили в эпоху, в которой наука открыта для всех. И если мы сохраним доступность и нейтральность интернета, мы сможем проверить правильность наших идей, развивать наше воображение, создавая новые взаимосвязи, и мы можем продолжить развитие нашего понимания

вселенной и разума.



Эпилог



В квантовой механике мы научились другому подходу к реальности и рассматривать всё, как вероятности, а не как определенности. В математическом смысле всё возможно.

Как в науке, так и в нашей повседневной жизни наша способность вычислять или угадывать вероятности, определяется нашей интеллектуальной способностью распознавать закономерности.

Чем более мы открыты, тем более четко мы можем видеть эти закономерности и основывать свои действия на разумной вероятности.

Так как в саму природу нашего левого полушария заложено отрицание идей, которые не вписываются в наши текущие взгляды, чем более привязаны мы к своим убеждениям, тем менее мы способны сделать сознательный выбор для себя. Но, контролируя этот процесс, мы расширяем свое самосознание и увеличиваем свободную волю.

Говорят, что мудрость приходит с возрастом. Но с открытостью и скептицизмом - ключевыми научными принципами - нам не нужны десятилетия проб и ошибок, чтобы определить, какие из наших убеждений могут быть неправильны.

Вопрос не в том, верны наши убеждения или нет, а в том, принесет пользу или вред наша эмоциональная привязанность к ним.



Свободного выбора не существует, пока мы эмоционально привязаны к системе убеждений. Как только у нас будет достаточно самосознания, чтобы понять это, мы сможем работать вместе, чтобы понять вероятности того, что на самом деле принесет нам наибольшую пользу.

«Развитие квантовой механики подвергло беспрецедентной критике наши классические научные взгляды. Самосознание и готовность пересмотреть свои гипотезы, которые постоянно подвергаются испытанию наукой и человечеством, будут определять степень, в которой мы достигнем более глубокого понимания разума и вселенной.»


Добро пожаловать на блог! Я очень рада Вам!

Наверняка Вы много раз слышали о необъяснимых тайнах квантовой физики и квантовой механики . Её законы завораживают мистикой, и даже сами физики признаются, что до конца не понимают их. С одной стороны, любопытно понять эти законы, но с другой стороны, нет времени читать многотомные и сложные книги по физике. Я очень понимаю Вас, потому что тоже люблю познание и поиск истины, но времени на все книги катастрофически не хватает. Вы не одиноки, очень многие любознательные люди набирают в поисковой строке: «квантовая физика для чайников, квантовая механика для чайников, квантовая физика для начинающих, квантовая механика для начинающих, основы квантовой физики, основы квантовой механики, квантовая физика для детей, что такое квантовая механика». Именно для Вас эта публикация .

Вам станут понятны основные понятия и парадоксы квантовой физики. Из статьи Вы узнаете:

  • Что такое интерференция?
  • Что такое спин и суперпозиция?
  • Что такое «измерение» или «коллапс волновой функции»?
  • Что такое квантовая запутанность (или Квантовая телепортация для чайников)? (см. статью )
  • Что такое мысленный эксперимент «Кот Шредингера»? (см. статью )

Что такое квантовая физика и квантовая механика?

Квантовая механика — это часть квантовой физики.

Почему же так сложно понять эти науки? Ответ прост: квантовая физика и квантовая механика (часть квантовой физики) изучают законы микромира. И законы эти абсолютно отличаются от законов нашего макромира. Поэтому нам трудно представить то, что происходит с электронами и фотонами в микромире.

Пример отличия законов макро- и микромиров : в нашем макромире, если Вы положите шар в одну из 2-х коробок, то в одной из них будет пусто, а в другой - шар. Но в микромире (если вместо шара - атом), атом может находиться одновременно в двух коробках. Это многократно подтверждено экспериментально. Не правда ли, трудно это вместить в голове? Но с фактами не поспоришь.

Ещё один пример. Вы сфотографировали быстро мчащуюся красную спортивную машину и на фото увидели размытую горизонтальную полосу, как будто-машина в момент фото находилась с нескольких точках пространства. Несмотря на то, что Вы видите на фото, Вы всё равно уверены, что машина в ту секунду, когда Вы ёё фотографировали находилась в одном конкретном месте в пространстве . В микро же мире всё не так. Электрон, который вращается вокруг ядра атома, на самом деле не вращается, а находится одновременно во всех точках сферы вокруг ядра атома. Наподобие намотанного неплотно клубка пушистой шерсти. Это понятие в физике называется «электронным облаком» .

Небольшой экскурс в историю. Впервые о квантовом мире учёные задумались, когда в 1900 году немецкий физик Макс Планк попытался выяснить, почему при нагревании металлы меняют цвет. Именно он ввёл понятие кванта. До этого учёные думали, что свет распространяется непрерывно. Первым, кто серьёзно воспринял открытие Планка, был никому тогда неизвестный Альберт Энштейн. Он понял, что свет – это не только волна. Иногда он ведёт себя, как частица. Энштейн получил Нобелевскую премию за своё открытие, что свет излучается порциями, квантами. Квант света называется фотоном (фотон, Википедия ) .

Для того, чтобы легче было понять законы квантовой физики и механики (Википедия) , надо в некотором смысле абстрагироваться от привычных нам законов классической физики. И представить, что Вы занырнули, как Алиса, в кроличью нору, в Страну чудес.

А вот и мультик для детей и взрослых. Рассказывает о фундаментальном эксперименте квантовой механики с 2-мя щелями и наблюдателем. Длится всего 5 минут. Посмотрите его перед тем, как мы углубимся в основные вопросы и понятия квантовой физики.

Квантовая физика для чайников видео . В мультике обратите внимание на «глаз» наблюдателя. Он стал серьёзной загадкой для учёных-физиков.

Что такое интерференция?

В начале мультика было показано на примере жидкости, как ведут себя волны – на экране за пластиной со щелями появляются чередующиеся тёмные и светлые вертикальные полосы. А в случае, когда в пластину «стреляют» дискретными частицами (например, камушками), то они пролетают сквозь 2 щели и попадают на экран прямо напротив щелей. И «рисуют» на экране только 2 вертикальные полосы.

Интерференция света – это «волновое» поведение света, когда на экране отображается много чередующихся ярких и тёмных вертикальных полос. Еще эти вертикальные полосы называются интерференционной картиной .

В нашем макромире мы часто наблюдаем, что свет ведёт себя, как волна. Если поставить руку напротив свечи, то на стене будет не чёткая тень от руки, а с расплывающимися контурами.

Итак, не так уж всё и сложно! Нам сейчас вполне понятно, что свет имеет волновую природу и если 2 щели освещать светом, то на экране за ними мы увидим интерференционную картину. Теперь рассмотрим 2-й эксперимент. Это знаменитый эксперимент Штерна-Герлаха (который провели в 20-х годах прошлого века).

В установку, описанную в мультике, не светом светили, а «стреляли» электронами (как отдельными частицами). Тогда, в начале прошлого века, физики всего мира считали, что электроны – это элементарные частицы материи и должны иметь не волновую природу, а такую же, как камушки. Ведь электроны – это элементарные частицы материи, правильно? То есть, если ими «бросать» в 2 щели, как камушками, то на экране за прорезями мы должны увидеть 2 вертикальные полоски.

Но… Результат был ошеломляющий. Учёные увидели интерференционную картину – много вертикальных полосок. То есть электроны, как и свет тоже могут иметь волновую природу, могут интерферировать. А с другой стороны стало понятно, что свет не только волна, но немного и частица — фотон (из исторической справки в начале статьи мы узнали, что за это открытие Энштейн получил Нобелевскую премию).

Может помните, в школе нам рассказывали на физике про «корпускулярно-волновой дуализм» ? Он означает, что когда речь идет об очень маленьких частицах (атомах, электронах) микромира, то они одновременно и волны, и частицы

Это сегодня мы с Вами такие умные и понимаем, что 2 выше описанных эксперимента – стрельба электронами и освещение щелей светом – суть одно и тоже. Потому что мы стреляем по прорезям квантовыми частицами. Сейчас мы знаем, что и свет, и электроны имеют квантовую природу, являются и волнами, и частицами одновременно. А в начале 20-го века результаты этого эксперимента были сенсацией.

Внимание! Теперь перейдём к более тонкому вопросу.

Мы светим на наши щели потоком фотонов (электронов) – и видим за щелями на экране интерференционную картину (вертикальные полоски). Это ясно. Но нам интересно увидеть, как пролетает каждый из электронов в прорези.

Предположительно, один электрон летит в левую прорезь, другой – в правую. Но тогда должны на экране появиться 2 вертикальные полоски прямо напротив прорезей. Почему же получается интерференционная картина? Может электроны как-то взаимодействуют между собой уже на экране после пролёта через щели. И в результате получается такая волновая картина. Как нам за этим проследить?

Будем бросать электроны не пучком, а по одному. Бросим, подождём, бросим следующий. Теперь, когда электрон летит один, он уже не сможет взаимодействовать на экране с другими электронами. Будем регистрировать на экране каждый электрон после броска. Один-два конечно не «нарисуют» нам понятной картины. Но когда по одному отправим в прорези их много, то заметим…о ужас – они опять «нарисовали» интерференционную волновую картину!

Начинаем медленно сходить с ума. Ведь мы ожидали, что будет 2 вертикальные полоски напротив щелей! Получается, что когда мы бросали фотоны по одному, каждый из них проходил, как бы через 2 щели одновременно и интерферировал сам с собой. Фантастика! Вернёмся к пояснению этого феномена в следующем разделе.

Что такое спин и суперпозиция?

Мы теперь знаем, что такое интерференция. Это волновое поведение микро частиц – фотонов, электронов, других микро частиц (давайте для простоты с этого момента называть их фотонами).

В результате эксперимента, когда мы бросали в 2 щели по 1 фотону, мы поняли, что он пролетает как будто через две щели одновременно. Иначе как объяснить интерференционную картину на экране?

Но как представить картину, что фотон пролетает сквозь две щели одновременно? Есть 2 варианта.

  • 1-й вариант: фотон, как волна (как вода) «проплывает» сквозь 2 щели одновременно
  • 2-й вариант: фотон, как частица, летит одновременно по 2-м траекториям (даже не по двум, а по всем сразу)

В принципе, эти утверждения равносильны. Мы пришли к «интегралу по траекториям». Это формулировка квантовой механики от Ричарда Фейнмана.

Кстати, именно Ричарду Фейнману принадлежит известное выражение, что уверенно можно утверждать, что квантовую механику не понимает никто

Но это его выражение работало в начале века. Но мы то теперь умные и знаем, что фотон может вести себя и как частица, и как волна. Что он может каким-то непонятным для нас способом пролетать одновременно через 2 щели. Поэтому нам легко будет понять следующее важное утверждение квантовой механики:

Строго говоря, квантовая механика говорит нам, что такое поведение фотона – правило, а не исключение. Любая квантовая частица находится, как правило, в нескольких состояниях или в нескольких точках пространства одновременно .

Объекты макромира могут находится только в одном определенном месте и в одном определенном состоянии. Но квантовая частица существует по своим законам. И ей и дела нет до того, что мы их не понимаем. На этом — точка.

Нам остаётся просто признать, как аксиому, что «суперпозиция» квантового объекта означает то, что он может находится на 2-х или более траекториях одновременно, в 2-х или более точках одновременно

То же относится и к другому параметру фотона – спину (его собственному угловому моменту). Спин — это вектор. Квантовый объект можно представить как микроскопический магнитик. Мы привыкли, что вектор магнита (спин) либо направлен вверх, либо вниз. Но электрон или фотон опять говорят нам: «Ребята, нам плевать, к чему Вы привыкли, мы можем быть в обоих состояниях спина сразу (вектор вверх, вектор вниз), точно так же, как мы можем находиться на 2-х траекториях одновременно или в 2-х точках одновременно!».

Что такое «измерение» или «коллапс волновой функции»?

Нам осталось немного — понять ещё, что такое «измерение» и что такое «коллапс волновой функции».

Волновая функция — это описание состояния квантового объекта (нашего фотона или электрона).

Предположим, у нас есть электрон, он летит себе в неопределённом состоянии, спин его направлен и вверх, и вниз одновременно . Нам надо измерить его состояние.

Измерим при помощи магнитного поля: электроны, у которых спин был направлен по направлению поля, отклонятся в одну сторону, а электроны, у которых спин направлен против поля — в другую. Ещё фотоны можно направлять в поляризационный фильтр. Если спин (поляризация) фотона +1 – он проходит через фильтр, а если -1, то нет.

Стоп! Вот тут у Вас неизбежно возникнет вопрос: до измерения ведь у электрона не было какого-то конкретного направления спина, так? Он ведь был во всех состояниях одновременно?

В этом-то и заключается фишка и сенсация квантовой механики . Пока Вы не измеряете состояние квантового объекта, он может вращаться в любую сторону (иметь любое направление вектора собственного углового момента – спина). Но в момент, когда Вы измерили его состояние, он как будто принимает решение, какой вектор спина ему принять.

Вот такой крутой этот квантовый объект – сам принимает решение о своём состоянии. И мы не можем заранее предсказать, какое решение он примет, когда влетит в магнитное поле, в котором мы его измеряем. Вероятность того, что он решит иметь вектор спина «вверх» или «вниз» – 50 на 50%. Но как только он решил – он находится в определённом состоянии с конкретным направлением спина. Причиной его решения является наше «измерение»!

Это и называется «коллапсом волновой функции» . Волновая функция до измерения была неопределённой, т.е. вектор спина электрона находился одновременно во всех направлениях, после измерения электрон зафиксировал определённое направление вектора своего спина.

Внимание! Отличный для понимания пример-ассоциация из нашего макромира:

Раскрутите на столе монетку, как юлу. Пока монетка крутиться, у нёё нет конкретного значения — орёл или решка. Но как только Вы решите «измерить» это значение и прихлопните монету рукой, вот тут-то и получите конкретное состояние монеты – орёл или решка. А теперь представьте, что это монета принимает решение, какое значение Вам «показать» – орёл или решка. Примерно также ведёт себя и электрон.

А теперь вспомните эксперимент, показанный в конце мультика. Когда фотоны пропускали через щели, они вели себя, как волна и показывали на экране интерференционную картину. А когда учёные захотели зафиксировать (измерить) момент пролёта фотонов через щель и поставили за экраном «наблюдателя», фотоны стали вести себя, не как волны, а как частицы. И «нарисовали» на экране 2 вертикальные полосы. Т.е. в момент измерения или наблюдения квантовые объекты сами выбирают, в каком состоянии им быть.

Фантастика! Не правда ли?

Но это ещё не всё. Наконец-то мы добрались до самого интересного.

Но… мне кажется, что получится перегруз информации, поэтому 2 эти понятия мы рассмотрим в отдельных постах:

  • Что такое ?
  • Что такое мысленный эксперимент .

А сейчас, хотите, чтобы информация разложилась по полочкам? Посмотрите документальный фильм, подготовленный Канадским институтом теоретической физики. В нём за 20 минут очень кратко и в хронологическом порядке Вам поведают о всех открытиях квантовой физики, начиная с открытия Планка в 1900 году. А затем расскажут, какие практические разработки выполняются сейчас на базе знаний по квантовой физике: от точнейших атомных часов до суперскоростных вычислений квантового компьютера. Очень рекомендую посмотреть этот фильм.

До встречи!

Желаю всем вдохновения для всех задуманных планов и проектов!

P.S.2 Пишите Ваши вопросы и мысли в комментариях. Пишите, какие ещё вопросы по квантовой физике Вам интересны?

P.S.3 Подписывайтесь на блог - форма для подписки под статьёй.

Физика - самая загадочная из всех наук. Физика дает нам понимание окружающего мира. Законы физики абсолютны и действуют на всех без исключения, не взирая на лица и социальный статус.

Данная статья предназначена для лиц старше 18 лет

А вам уже исполнилось 18?

Фундаментальные открытия в области квантовой физики

Исаак Ньютон, Никола Тесла, Альберт Эйнштейн и многие другие — великие проводники человечества в удивительном мире физики, которые подобно пророкам открыли человечеству величайшие тайны мироздания и возможности управления физическими явлениями. Их светлые головы рассекли тьму невежества неразумного большинства и подобно путеводной звезде указали путь человечеству во мраке ночи. Одним из таких проводников в мире физики стал Макс Планк — отец квантовой физики.

Макс Планк не только основоположник квантовой физики, но и автор всемирно известной квантовой теории. Квантовая теория — важнейшая составляющая квантовой физики. Простыми словами, данная теория описывает движение, поведение и взаимодействие микрочастиц. Основатель квантовой физики также принес нам и множество других научных трудов, которые стали краеугольными камнями современной физики:

  • теория теплового излучения;
  • специальная теория относительности;
  • исследования в области термодинамики;
  • исследования в области оптики.

Теория квантовой физики о поведении и взаимодействии микрочастиц стала основой для физики конденсированного состояния, физики элементарных частиц и физики высоких энергий. Квантовая теория объясняет нам суть множества явлений нашего мира — от функционирования электронных вычислительных машин до строения и поведения небесных тел. Макс Планк, создатель данной теории, благодаря своему открытию позволил нам постигнуть истинную суть многих вещей на уровне элементарных частиц. Но создание данной теории — далеко не единственная заслуга ученого. Он стал первым, кто открыл фундаментальный закон Вселенной — закон сохранения энергии. Вклад в науку Макса Планка сложно переоценить. Если говорить кратко, то его открытия бесценны для физики, химии, истории, методологии и философии.

Квантовая теория поля

В двух словах, квантовая теория поля — это теория описания микрочастиц, а также их поведения в пространстве, взаимодействия между собой и взаимопревращения. Данная теория изучает поведение квантовых систем в рамках, так называемых степеней свободы. Это красивое и романтичное название многим из нас толком ничего не говорит. Для чайников, степени свободы — это количество независимых координат, которые необходимы для обозначения движения механической системы. Простыми словами, степени свободы — это характеристики движения. Интересные открытия в области взаимодействия элементарных частиц совершил Стивен Вайнберг. Он открыл так называемый нейтральный ток — принцип взаимодействия между кварками и лептонами, за что и получил Нобелевскую премию в 1979-ом году.

Квантовая теория Макса Планка

В девяностых годах восемнадцатого века немецкий физик Макс Планк занялся изучением теплового излучения и в итоге получил формулу для распределения энергии. Квантовая гипотеза, которая родилась в ходе данных исследований, положила начало квантовой физике, а также квантовой теории поля, открытой в 1900-ом году. Квантовая теория Планка заключается в том, что при тепловом излучении продуцируемая энергия исходит и поглощается не постоянно, а эпизодически, квантово. 1900-ый год, благодаря данному открытию, которое совершил Макс Планк, стал годом рождения квантовой механики. Также стоит упомянуть о формуле Планка. Если говорить кратко, то ее суть следующая — она основана на соотношении температуры тела и его излучения.

Квантово-механическая теория строения атома

Квантово-механическая теория строения атома является одной из базовых теорий понятий в квантовой физике, да и в физике вообще. Данная теория позволяет нам понять строение всего материального и открывает завесу тайны над тем, из чего же на самом деле состоят вещи. А выводы, исходя из данной теории, получаются весьма неожиданные. Рассмотрим строение атома кратко. Итак, из чего же на самом деле состоит атом? Атом состоит из ядра и облака электронов. Основа атома, его ядро, содержит в себе почти всю массу самого атома — более 99 процентов. Ядро всегда имеет положительный заряд, и он определяет химический элемент, частью которого является атом. Самым интересным в ядре атома является то, что он содержит в себе практически всю массу атома, но при этом занимает лишь одну десятитысячную его объема. Что же из этого следует? А вывод напрашивается весьма неожиданный. Это значит, что плотного вещества в атоме — всего лишь одна десятитысячная. А что же занимает все остальное? А все остальное в атоме — электронное облако.

Электронное облако — это не постоянная и даже, по сути, не материальная субстанция. Электронное облако — это лишь вероятность появления электронов в атоме. То есть ядро занимает в атоме лишь одну десятитысячную, а все остальное — пустота. И если учесть, что все окружающие нас предметы, начиная от пылинок и заканчивая небесными телами, планетами и звездами, состоят из атомов, то получается, что все материальное на самом деле более чем на 99 процентов состоит из пустоты. Эта теория кажется вовсе невероятной, а ее автор, как минимум, заблуждающимся человеком, ведь вещи, существующие вокруг, имеют твердую консистенцию, имеют вес и их можно осязать. Как же он могут состоять из пустоты? Не закралась ли ошибка в эту теорию строения вещества? Но ошибки тут никакой нет.

Все материальные вещи кажутся плотными лишь за счет взаимодействия между атомами. Вещи имеют твердую и плотную консистенцию лишь за счет притяжения или же отталкивания между атомами. Это и обеспечивает плотность и твердость кристаллической решетки химических веществ, из которых и состоит все материальное. Но, интересный момент, при изменении, например, температурных условий окружающей среды, связи между атомами, то есть их притяжение и отталкивание может слабеть, что приводит к ослаблению кристаллической решетки и даже к ее разрушению. Именно этим объясняется изменение физических свойств веществ при нагревании. Например, при нагревании железа оно становится жидким и ему можно придать любую форму. А при таянии льда, разрушение кристаллической решетки приводит к изменению состояния вещества, и из твердого оно превращается в жидкое. Это яркие примеры ослабления связей между атомами и, как следствие, ослабления или разрушения кристаллической решетки, и позволяют веществу стать аморфным. А причина таких загадочных метаморфоз как раз в том, что вещества лишь на одну десятитысячную состоят из плотной материи, а все остальное — пустота.

И вещества кажутся твердыми лишь по причине прочных связей между атомами, при ослаблении которых, вещество видоизменяется. Таким образом, квантовая теория строения атома позволяет совершенно по-другому взглянуть на окружающий мир.

Основатель теории атома,Нильс Бор, выдвинул интересную концепцию о том, что электроны в атоме не излучают энергию постоянно, а лишь в момент перехода между траекториями своего движения. Теория Бора помогла объяснить многие внутриатомные процессы, а также сделала прорыв в области такой науки, как химия, объясняя границу таблицы, созданной Менделеевым. Согласно , последний элемент, способный существовать во времени и пространстве, имеет порядковый номер сто тридцать семь, а элементы, начиная со сто тридцать восьмого, существовать не могут, так как их существование противоречит теории относительности. Также, теория Бора объяснила природу такого физического явления, как атомные спектры.

Это спектры взаимодействия свободных атомов, возникающие при излучении энергии между ними. Такие явления характерны для газообразных, парообразных веществ и веществ в состоянии плазмы. Таким образом, квантовая теория сделала революцию в мире физики и позволила продвинуться ученым не только в сфере этой науки, но и в сфере многих смежных наук: химии, термодинамики, оптики и философии. А также позволила человечеству проникнуть в тайны природы вещей.

Еще очень многое надлежит перевернуть человечеству в своем сознании, чтобы осознать природу атомов, понять принципы их поведения и взаимодействия. Поняв это, мы сможем понять и природу окружающего нас мира, ведь все, что нас окружает, начиная с пылинок и заканчивая самим солнцем, да и мы сами — все состоит из атомов, природа которых загадочна и удивительна и таит в себе еще массу тайн.

Среди двух фундаментальных теорий, объясняющих окружающую нас реальность, квантовая теория апеллирует к взаимодействию между наименьшими частицами материи, а общая теория относительности обращается к гравитации и крупнейшим структурам во всей Вселенной. Со времен Эйнштейна физики пытались преодолеть разрыв между этими учениями, но с переменным успехом.

Один из способов согласования гравитации с квантовой механикой заключался в том, чтобы показать, что в основе гравитации лежат неделимые частицы материи, кванты. Этот принцип можно сравнить с тем, как сами кванты света, фотоны, представляют собой электромагнитную волну. До сих пор у ученых не было достаточно данных, чтобы подтвердить это предположение, но Антуан Тиллой (Antoine Tilloy) из Института квантовой оптики им. Макса Планка в Гархинге, Германия, попытался описать гравитацию принципами квантовой механики. Но как ему это удалось?

Квантовый мир

В квантовой теории состояние частицы описывается ее волновой функцией . Она, к примеру, позволяет рассчитать вероятность нахождения частицы в той или иной точке пространства. Перед самим измерением неясно не только то, где находится частица, но и то, существует ли она. Сам факт измерения буквально создает реальность, «разрушая» волновую функцию. Но квантовая механика редко обращается к измерениям — потому-то она и является одной из самых спорных областей физики. Вспомните парадокс Шредингера : вы не сможете разрешить его, пока не произведете измерение, открыв коробку и выяснив, жив кот или нет.

Одним из решений подобных парадоксов является так называемая модель GRW , которая была разработана в конце 1980-х годов. Эта теория включает в себя такое явление, как «вспышки » — спонтанные коллапсы волновой функции квантовых систем. Результат ее применения точно такой же, как если бы измерения были проведены без наблюдателей как таковых. Тиллой модифицировал ее, чтобы показать, как с ее помощью можно выйти на теорию гравитации. В его варианте вспышка, разрушающая волновую функцию и заставляющую частицу тем самым находиться в одном месте, также создает гравитационное поле в этот момент в пространстве-времени. Чем больше квантовая система — тем больше в ней частиц и тем чаще случаются вспышки, создавая тем самым флуктуирующее гравитационное поле.

Самое интересное, что среднее значение этих флуктуаций и является тем самым гравитационным полем, которое описывает теория гравитации Ньютона. Такой подход к объединению гравитации с квантовой механикой называется квазиклассическим: гравитация возникает из квантовых процессов, но остается классической силой. «Нет никакой реальной причины игнорировать квазиклассический подход, при котором гравитация является классической на фундаментальном уровне», говорит Тиллой.

Феномен гравитации

Клаус Хорнбергер из Университета Дуйсбург-Эссен в Германии, не принимавший участия в разработке теории, относится к ней с большой симпатией. Однако ученый указывает на то, что до того, как эта концепция ляжет в основу единой теории, объединяющей и объясняющей природу всех фундаментальных аспектов окружающего нас мира, необходимо будет решить еще целый ряд задач. К примеру, модель Тиллоя точно может быть использована для получения ньютоновской силы тяжести, а вот ее соответствие гравитационной теории еще нужно проверить с помощью математики.

Впрочем, ученый и сам согласен с тем, что его теория нуждается в доказательной базе. К примеру, он предсказывает, что гравитация будет вести себя по‑разному в зависимости от масштабов рассматриваемых объектов: для атомов и для сверхмассивных черных дыр правила могут сильно отличаться. Как бы то ни было, если тесты обнаружат, что модель Тиллроя и в самом деле отражает реальность, а гравитация и в самом деле является следствием квантовых флуктуаций, то это позволит физикам осмыслить окружающую нас действительность на качественно ином уровне.

Ярко блестела золотистая осенняя листва деревьев. Лучи вечернего солнца коснулись поредевших верхушек. Свет пробился сквозь ветки и устроил спектакль из причудливых фигур, мелькавших на стене университетской «каптёрки».

Задумчивый взгляд сэра Гамильтона медленно скользил, наблюдая за игрой светотени. В голове ирландского математика шла настоящая плавильня мыслей, идей и выводов. Он прекрасно понимал, что объяснение многих явлений с помощью Ньютоновской механики подобно игре теней на стене, обманчиво сплетающих фигуры и оставляющих без ответа многие вопросы. «Возможно, это волна… а может быть, поток частиц, - размышлял учёный, - или свет является проявлением обоих явлений. Подобно фигурам, сотканным из тени и света».

Начало квантовой физики

Интересно наблюдать за великими людьми и пытаться осознать, как рождаются великие идеи, изменяющие ход эволюции всего человечества. Гамильтон - один из тех, кто стоял у истоков зарождения квантовой физики. Спустя пятьдесят лет, в начале двадцатого века, изучением элементарных частиц занимались многие учёные. Полученные знания были противоречивы и нескомпилированы. Однако первые шаткие шаги были сделаны.

Понимание микромира в начале ХХ века

В 1901 году была представлена первая модель атома и показана её несостоятельность, с позиции обычной электродинамики. В этот же период Макс Планк и Нильс Бор публикуют множество трудов о природе атома. Несмотря на их полного понимания структуры атома не существовало.

Спустя несколько лет, в 1905 году, малоизвестный немецкий учёный Альберт Эйнштейн опубликовал доклад о возможности существования светового кванта в двух состояниях - волнового и корпускулярного (частицы). В его труде приводились доводы, поясняющие причину несостоятельности модели. Однако видение Эйнштейна было ограничено старым пониманием модели атома.

После многочисленных трудов Нильса Бора и его коллег в 1925 году зародилось новое направление - некое подобие квантовой механики. Распространённое выражение - «квантовая механика» появилось спустя тридцать лет.

Что мы знаем о квантах и их причудах?

На сегодня квантовая физика ушла достаточно далеко. Открыто много различных явлений. Но что мы знаем на самом деле? Ответ представлен одним учёным современности. "В квантовую физику можно либо верить, либо ее не понимать", - таково определение Подумайте над этим сами. Достаточно будет упомянуть такое явление, как квантовая запутанность частиц. Это явление ввергло научный мир в положение полного недоумения. Ещё большим шоком стало то, что возникший парадокс несовместим с и Эйнштейна.

Впервые эффект квантовой запутанности фотонов обсуждался в 1927 году на пятом Солвеевском Конгрессе. Между Нильсом Бором и Эйнштейном возник жаркий спор. Парадокс квантовой спутанности полностью изменил понимание сути материального мира.

Известно, что все тела состоят из элементарных частиц. Соответственно, все явления квантовой механики отражаются в обычном мире. Нильс Бор говорил, что если мы не смотрим на Луну, то её не существует. Эйнштейн считал это неразумным и полагал, что объект существует независимо от наблюдателя.

При изучении проблем квантовой механики следует понимать, что её механизмы и законы взаимосвязаны между собой и не подчиняются классической физике. Попробуем разобраться в самой противоречивой области - квантовой запутанности частиц.

Теория квантовой запутанности

Для начала стоит понимать, что квантовая физика подобна бездонному колодцу, в котором можно обнаружить все, что угодно. Явление квантовой запутанности в начале прошлого века изучалось Эйнштейном, Бором, Максвеллом, Бойлем, Беллом, Планком и многими другими физиками. На протяжении двадцатого века по всему миру активно изучали это и экспериментировали тысячи учёных.

Мир подчинён строгим законам физики

Почему такой интерес к парадоксам квантовой механики? Все очень просто: мы живём, подчиняясь определённым законам физического мира. Умение «обходить» предопределённость открывает магическую дверь, за которой все становится возможным. К примеру, концепция «Кота Шрёдингера» ведёт к управлению материей. Также станет возможна телепортация информации, которую вызывает квантовая запутанность. Передача информации станет мгновенной, независимо от расстояния.
Этот вопрос пока находится в стадии изучения, однако имеет положительную тенденцию.

Аналогия и понимание

Чем же уникальна квантовая запутанность, как её понять и что происходит при этом? Попробуем разобраться. Для этого потребуется провести некий мысленный эксперимент. Представьте, что у вас в руках две коробки. В каждой из них лежит по одному мячу с полосой. Теперь одну коробку отдаём космонавту, и он улетает на Марс. Как только вы открываете коробку и видите, что полоса на мяче горизонтальна, то в другой коробке мяч автоматически будет иметь вертикальную полосу. Это и будет квантовая запутанность простыми словами выраженная: один объект предопределяет положение другого.

Однако следует понимать, что это лишь поверхностное объяснение. Для того чтобы получить квантовую запутанность, необходимо, чтобы частицы имели одинаковое происхождение, подобно близнецам.

Очень важно понимать, что эксперимент будет сорван, если до вас кто-то имел возможность посмотреть хотя бы на один из объектов.

Где может быть использована квантовая спутанность?

Принцип квантовой запутанности может быть использован для передачи информации на большие расстояния мгновенно. Подобный вывод противоречит теории относительности Эйнштейна. Она гласит, что максимальная скорость перемещения присуща только свету - триста тысяч километров в секунду. Подобная передача информации даёт возможность существования физической телепортации.

Все в мире - информация, в том числе и материя. К такому выводу пришли квантовые физики. В 2008 году на основании теоретической базы данных удалось увидеть квантовую спутанность невооружённым глазом.

Это в очередной раз говорит о том, что мы стоим на пороге великих открытий - перемещения в пространстве и во времени. Время во Вселенной дискретно, поэтому мгновенное перемещение на огромные расстояния даёт возможность попадать в различную плотность времени (на основании гипотез Эйнштейна, Бора). Возможно, в будущем это будет реальностью так же, как мобильный телефон сегодня.

Эфиродинамика и квантовая запутанность

По мнению некоторых ведущих учёных, квантовая спутанность поясняется тем, что пространство заполнено неким эфиром - чёрной материей. Любая элементарная частица, как нам известно, пребывает в виде волны и корпускулы (частицы). Некоторые учёные считают, что все частицы находятся на «полотне» тёмной энергии. Понять это непросто. Давайте попробуем разобраться другим путём - методом ассоциации.

Представьте себя на берегу моря. Лёгкий бриз и слабое дуновение ветра. Видите волны? А где-то вдалеке, в отблесках лучей солнца, виден парусник.
Корабль будет нашей элементарной частицей, а море - эфиром (тёмной энергией).
Море может находиться в движении в виде видимых волн и капель воды. Точно так же и все элементарные частицы могут быть просто морем (её составляющей неотъемлемой частью) или же отдельной частицей - каплей.

Это упрощённый пример, все несколько сложнее. Частицы без присутствия наблюдателя находятся в виде волны и не имеют определённого местоположения.

Белый парусник - это выделенный объект, он отличается от глади и структуры воды моря. Точно так же существуют «пики» в океане энергии, которые мы можем воспринимать как проявление известных нам сил, сформировавших материальную часть мира.

Микромир живёт по своим законам

Принцип квантовой запутанности можно понять, если брать в учёт то, что элементарные частицы находятся в виде волн. Не имея определённого местоположения и характеристик, обе частицы пребывают в океане энергии. В момент появления наблюдателя волна «превращается» в доступный осязанию объект. Вторая частица, соблюдая систему равновесия, приобретает противоположные свойства.

Описанная статья не направлена на ёмкие научные описания квантового мира. Возможность осмысления обычного человека базируется на доступности понимания изложенного материала.

Физика элементарных частиц изучает запутанность квантовых состояний на основании спина (вращения) элементарной частицы.

Научным языком (упрощённо) - квантовая спутанность определяется по разному спину. В процессе наблюдения за объектами учёные увидели, что может существовать только два спина - вдоль и поперёк. Как ни странно, в других положениях частицы наблюдателю не «позируют».

Новая гипотеза - новый взгляд на мир

Изучение микрокосмоса - пространства элементарных частиц - породило множество гипотез и предположений. Эффект квантовой запутанности натолкнул учёных на мысль о существовании некой квантовой микрорешётки. По их мнению, в каждом узле - точке пересечения - находится квант. Вся энергия - целостная решётка, а проявление и движение частиц возможно только через узлы решётки.

Размер «окна» такой решётки достаточно мал, и измерение современным оборудованием невозможно. Однако, чтобы подтвердить или опровергнуть данную гипотезу, учёные решили изучить движение фотонов в пространственной квантовой решётке. Суть в том, что фотон может двигаться либо прямо, либо зигзагами - по диагонали решётки. Во втором случае, преодолев большую дистанцию, он потратит больше энергии. Соответственно, будет отличаться от фотона, движущегося по прямой линии.

Возможно, со временем мы узнаем, что живём в пространственной квантовой решётке. Или же может оказаться неверным. Однако именно принцип квантовой запутанности указывает на возможность существования решётки.

Если говорить простым языком, то в гипотетическом пространственном «кубе» определение одной грани несёт за собой чёткое противоположное значение другой. Таков принцип сохранения структуры пространство - время.

Эпилог

Чтобы понимать волшебный и загадочный мир квантовой физики, стоит внимательно всмотреться в ход развития науки за последние пятьсот лет. Раньше считалось, что Земля имеет плоскую форму, а не сферическую. Причина очевидна: если принять её форму круглой, то вода и люди не смогут удержаться.

Как мы видим, проблема существовала в отсутствии полного видения всех действующих сил. Возможно, что современной науке для понимания квантовой физики не хватает видения всех действующих сил. Пробелы видения порождают систему противоречий и парадоксов. Возможно, магический мир квантовой механики хранит в себе ответы на поставленные вопросы.


Close