Данный урок посвящен обобщению и систематизации знаний по теме «Классы неорганических веществ». Учитель расскажет, как из веществ одного класса можно получить вещество другого класса. Полученные знания и умения пригодятся для составления уравнений реакций по цепочкам превращений.

В ходе химических реакций химический элемент не исчезает, атомы переходят из одного вещества в другое. Атомы химического элемента как бы передаются от простого вещества к более сложному, и наоборот. Таким образом, возникают так называемые генетические ряды, начинающиеся простым веществом - металлом или неметаллом - и заканчивающиеся солью.

Напомню вам, что в состав солей входят металлы и кислотные остатки. Итак, генетический ряд металла может выглядеть таким образом:

Из металла в результате реакции соединения с кислородом можно получить основный оксид, основный оксид при взаимодействии с водой дает основание (только, если это основание - щелочь), из основания в результате реакции обмена с кислотой, солью или кислотным оксидом можно получить соль.

Обратите внимание, такой генетический ряд подходит только для металлов, гидроксиды которых являются щелочами.

Запишем уравнения реакций, соответствующих превращениям лития в его генетическом ряду:

Li → Li 2 O → LiOH→ Li 2 SO 4

Как вы знаете, металлы при взаимодействии с кислородом, как правило, образуют оксиды. При окислении кислородом воздуха литий образует оксид лития:

4Li + O 2 = 2Li 2 O

Оксид лития, взаимодействуя с водой, образует гидроксид лития - растворимое в воде основание (щелочь):

Li 2 O + H 2 O = 2LiOH

Сульфат лития можно получить из лития несколькими способами, например, в результате реакции нейтрализации с серной кислотой:

2. Химическая информационная сеть ().

Домашнее задание

1. с. 130-131 №№ 2,4 из Рабочей тетради по химии: 8-й кл.: к учебнику П.А. Оржековского и др. «Химия. 8 класс» / О.В. Ушакова, П.И. Беспалов, П.А. Оржековский; под.ред. проф. П.А. Оржековского - М.: АСТ: Астрель: Профиздат, 2006.

2. с.204 №№ 2, 4 из учебника П.А. Оржековского, Л.М. Мещеряковой, М.М. Шалашовой «Химия: 8кл.», 2013 г.

Между классами неорганических соединений существует генетическая связь. Из простых веществ можно получить сложные и наоборот. Из соединений одного класса можно получить соединения другого класса.

Упрощенно генетическую связь между классами неорганических соединений можно представить следующей схемой:

Последовательность таких превращений для неметаллов можно изобразить следующей схемой: CaНРО 4

Р → Р 2 О 5 → Н 3 РО 4 → Са 3 (РО 4) 2

(СаОН) 3 РО 4

Для типичных металлов можно осуществить следующую цепочку превращений:

Ba → BaO → Ba(OH) 2 → BaSO 4

Для металлов, оксиды и гидроксиды которых амфотерны (полуметаллов) можно осуществить следующие превращения:

Al → Al 2 O 3 → Al(OH) 3 → Na → AlCl 3 → AlOHCl 2 → → Al(OH) 3 → Al 2 O 3 .

Связи между классами:

1. Металлы, неметаллы соли.

При непосредственном взаимодействии металлов и неметаллов образуются соли бескислородных кислот (галогениды, сульфиды):

2Na + С1 2 = 2NaCl

Эти соединения устойчивы и при нагревании, как правило, не разлагаются.

2. Основные оксиды, кислотные оксиды соли.

СаО + СO 2 = СаСO 3 ;

Na 2 O + SO 3 = Na 2 SO 4 .

3. Основания, кислоты соли.

Осуществляется посредством реакции нейтрализации:

2NaOH + H 2 SO 4 = Na 2 SO 4 + 2H 2 O,

ОН - + Н + →Н 2 O;

Mg(OH) 2 + 2НС1 = MgCl 2 + 2Н 2 O,

Mg(OH) 2 + 2Н + → Mg 2+ + 2Н 2 O.

4. Металлы основные оксиды.

Большинство металлов взаимодействуют с кислородом, образуя оксиды:

2Са + О 2 = 2СаО;

4А1 + 3O 2 = 2А1 2 O 3 .

Не взаимодействуют с кислородом золото, серебро, платина и другие благородные металлы, оксиды таких металлов получают косвенным путем.

5. Неметаллы кислотные оксиды.

Неметаллы (за исключением галогенов и благородных газов) взаимодействуют с кислородом, образуя оксиды:

4Р + 5O 2 = 2Р 2 O 5 ;

S + O 2 = SO 2 .

6. Основные оксиды основания.

Непосредственным взаимодействием с водой могут быть получены только гидроксиды щелочных и щелочноземельных металлов (щелочи):

Na 2 O + Н 2 O = 2NaOH;

СаО + Н 2 O = Са(ОН) 2 .

Остальные основания получают косвенным путем.

7. Кислотные оксиды кислоты.

Кислотные оксиды взаимодействуют с водой, образуя соответствующие кислоты:

SO 3 + Н 2 O = H 2 SO 4 ;

Р 2 O 5 + 3Н 2 O = 2Н 3 РO 4 .

Исключение SiO 2 , который с водой не реагирует.

8. Основания, кислотные оксиды соли.

Щелочи взаимодействуют с кислотными оксидами, образуя соли:

2NaOH + SO 3 = Na 2 SO 4 + H 2 O,

2OН - + SO 3 = SO 4 2- + Н 2 O;

Ca(OH) 2 + СO 2 = CaCO 3 ↓ + Н 2 O,

Са 2+ + 2OН - + СO 2 → СаСО 3 ↓ + Н 2 О.

9. Кислоты, основные оксиды соли.

Оксиды металлов растворяются в кислотах, образуя соли:

CuO + H 2 SO 4 = CuSO 4 + Н 2 O,

CuO + 2Н + = Cu 2+ + Н 2 O;

Na 2 O + 2НС1 = 2NaCl + Н 2 O,

Na 2 O + 2H + = 2Na + + Н 2 O.

10. Основания основные оксиды.

Нерастворимые основания и LiOH при нагревании разлагаются:

2LiOH = Li 2 O + H 2 O;

Cu(OH) 2 = CuO + H 2 O.

11. Кислоты кислотные оксиды.

Неустойчивые кислородсодержащие кислоты разлагаются при нагревании (H 2 SiO 3) и даже без нагревания (Н 2 СO 3 , НСlO). В то же время ряд кислот устойчив к нагреванию (H 2 SO 4 , H 3 PO 4).

H 2 SiO 3 = Н 2 O + SiO 2 ;

Н 2 СO 3 = Н 2 O + СO 2 .

12. Оксиды металлов металлы.

Некоторые оксиды тяжелых металлов могут разлагаться на металл и кислород:

2HgO = 2Hg + O 2 .

Также металлы получают из соответствующих оксидов с помощью восстановителей:

3МnO 2 + 4Al = 3Мn + 2Аl 2 O 3 ;

Fe 2 O 3 + 3H 2 =2Fe + 3Н 2 O.

13. Кислотные оксиды неметаллы.

Большинство оксидов неметаллов при нагревании не разлагаются. На неметалл и кислород разлагаются только некоторые неустойчивые оксиды (оксиды галогенов).

Некоторые неметаллы получают при восстановлении из соответствующих оксидов:

SiO 2 + 2Mg = 2MgO + Si.

14. Соли, основания → основания.

Нерастворимые основания получают действием щелочей на растворы соответствующих кислот:

CuSO 4 + 2NaOH = Cu(OH) 2 ↓ + Na 2 SO 4 ,

Cu 2+ + 2OH - → Cu(OH) 2 ↓;

FeCl 2 + 2KOH = Fe(OH) 2 ↓ + 2KCl,

Fe 2+ + 2OH - = Fe(OH) 2 ↓.

15. Соли, кислоты → кислоты.

Растворимые соли взаимодействуют с кислотами (в соответствии с вытеснительным рядом), если в результате образуется более слабая или летучая кислота:

Na 2 SiO 3 + 2HCl = 2NaCl + H 2 SiO 3 ↓,

SiO 3 2- + 2H + → H 2 SiO 3 ↓;

NaCl (тв.) + H 2 SO 4(к) = NaHSO 4 + HCl.

16. Соли основные оксиды, кислотные оксиды.

Соли некоторых кислородсодержащих кислот (нитраты, карбонаты) при нагревании разлагаются:

СаСО 3 = СаО + СO 2 ;

2Cu(NO 3) 2 = 2CuO + 4NO 2 + O 2 .

УПРАЖНЕНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ПО ТЕМЕ «ГЕНЕТИЧЕСКАЯ СВЯЗЬ МЕЖДУ КЛАССАМИ НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ»

1. Назовите перечисленные ниже вещества, распределите их по классам неорганических соединений: Na 3 PO 4 , H 2 SiO 3 , NO, B 2 O 3 , MgS, BaI 2 , Ca(OH) 2 , KNO 3 , HNO 2 , Cl 2 O 7 , Fe(OH) 2 , P 2 O 5 , HF, MnO 2 .

2.Из каких перечисленных ниже веществ можно в одну стадию получить гидроксид (кислоту или основание): медь, оксид железа (П), оксид бария, оксид азота (П), оксид азота (V), оксид кремния, сульфат меди, хлорид калия, калий, карбонат магния.

3. Из приведенного перечня выпишите формулы веществ, относящихся к: 1) оксидам; 2) основаниям; 3) кислотам; 4) солям:

СO 2 , NaOH, HCl, SO 3 , CuSO 4 , NaNO 3 , КСl, H 2 SO 4 , Ca(OH) 2 , P 2 O 5 , HNO 3 , Al(OH) 3 .

4. Назовите вещества: Zn(OH) 2 , MgO, P 2 O 3 , NaHCO 3 , H 3 PO 3 , Fe 2 (SO 4) 3 , КОН, (АlOН) 3 (РO 4) 2 , Ba(MnO 4) 2 , CO, HI. Укажите, к какому классуотносится каждое вещество.

5. Напишите молекулярные формулы следующих веществ и укажите, к какому классу относится каждое вещество:

1) гидроксокарбонат меди (II);

2) оксид азота (V);

3) гидроксид никеля (II);

4) гидрофосфат бария;

5) хлорная кислота;

6) гидроксид хрома (III);

7) хлорат калия;

8) сероводородная кислота;

9) цинкат натрия.

6. Приведите примеры реакций соединения между:

1) простыми веществами-неметаллами;

2) простым веществом и оксидом;

3) оксидами;

4) сложными веществами, не являющимися оксидами;

5) металлом и неметаллом;

6) тремя веществами.

7. С какими из нижеприведенных веществ может вступать в реакцию:

1) оксид углерода (IV): HCl, O 2 , NO 2 , КОН, Н 2 O;

2) оксид магния: Ва(ОН) 2 , HCl, CO 2 , O 2 , HNO 3 ;

3) гидроксид железа (II): KCl, HC1, КОН, O 2 , Н 2 O, HNO 3 ;

4) хлороводород: Zn, MgO, ZnCl 2 , HNO 3 , Ca(OH) 2 , Cu, (ZnOH)Cl.

8. Возможно ли взаимодействие между следующими веществами:

1) оксид углерода (IV) и гидроксид калия;

2) гидросульфат калия и гидроксид кальция;

3) фосфат кальция и серная кислота;

4) гидроксид кальция и оксид серы (IV);

5) серная кислота и гидроксид калия;

6) гидрокарбонат кальция и фосфорная кислота;

7) оксид кремния и серная кислота;

8) оксид цинка и оксид фосфора (V).

Напишите уравнения возможных реакций, укажите условия, в которых они протекают. Если реакции могут приводить к различным веществам, то укажите, в чем состоит различие в условиях их проведения.

9. Приведите уравнения реакций получения следующих веществ: ортофосфат натрия (4 способа), сульфат калия (7 способов), гидроксид цинка.

10. Один из способов получения соды (карбоната натрия) заключается в действии воды и оксида углерода (IV) на алюминат натрия. Составьте уравнения реакций.

11. He меняя коэффициентов, напишите продукты реакций:

1) MgO + 2H 2 SO 4 →

2) 2SO 2 + Ba(OH) 2 →

3) 3N 2 O 5 + 2Аl(ОН) 3 →

4) Р 2 O 5 + 4NaOH →

5) P 2 O 5 + 6NaOH →

6) P 2 O 5 + 2NaOH →

12.Составьте уравнения реакций для получения разных типов солей:

1) SO 2 + Ва(ОН) 2 → (средняя и кислая соли),

2) А1 2 O 3 + Н 2 O + HNO 3 → (средняя соль, основные соли),

3) Na 2 O + H 2 S → (средняя и кислая соли),

4) SO 3 + Са(ОН) 2 → (средняя и основная соли),

5) СаО + Н 2 O + Р 2 O 5 →(основная соль, кислые соли).

13. Закончите уравнения реакций:

СаО + А1 2 O 3 → СаНРO 4 + Са(ОН) 2 →

Сг 2 O 3 + H 2 SO 4 → AlOHSO 4 + NaOH →

Cr 2 O 3 + NaOH → СаСО 3 + CO 2 + H 2 O →

A1 2 O 3 + HClO 4 → Ca(HCO 3) 2 + HCl →

Mn 2 O 7 + KOH → ZnS + H 2 S →

NO 2 + Ca(OH) 2 → CaSO 4 + H 2 SO 4 →

Zn(OH) 2 + NaOH → (ZnOH)Cl + HCl →

Zn(OH) 2 + HNO 3 → Bi(OH) 3 + H 2 SO 4(недост.) →

AlCl 3 + NaОН (недост.) → (FeOH)Cl + NaHS →

AlCl 3 + NaOH → Na 2 ZnO 2 + Н 2 SO 4(избыток) →

AlC1 3 + NaOH (избыток.) → Ca(AlO 2) 2 + НС1 (избыток) →

14. Запишите уравнения реакций, при помощи которых можно осуществить следующие превращения:

1) Сu → СuО → CuSO 4 → Сu(ОН) 2 → СuС1 2 → Cu(NO 3) 2

2) Zn → ZnO → ZnSO 4 → Zn(OH) 2 → Na 2 ZnO 2 → ZnCl 2

3) Р → Р 2 O 5 → Н 3 РO 4 → К 3 РO 4 → Са 3 (РO 4) 2 → Н 3 РО 4

4) Mg → MgO → MgCl 2 → Mg(OH) 2 → Mg(HSO 4) 2 → MgSO 4

5) Ca → CaO → Ca(OH) 2 → CaCO 3 → Ca(HCO 3) 2 → CO 2

6) Cr → Cr 2 (SO 4) 3 → Сг(ОН) 3 → NaСrO 2 → Cr 2 O 3 → K

7) P → P 2 O 5 → HPO 3 → H 3 PO 4 → NaH 2 PO 4 → Na 3 PO 4

8) CuS → CuO → CuSO 4 → Cu(OH) 2 → CuO → Cu

9) Al → Al 2 O 3 → Al 2 (SO 4) 3 → Al(HSO 4) 3 → Al(OH) 3 → K

10) S → SO 2 → SO 3 → NaHSO 4 → Na 2 SO 4 → BaSO 4

11) Zn → ZnO → ZnCl 2 → Zn → Na 2

12) Zn → ZnSO 4 → ZnCl 2 → Zn(OH) 2 → Na 2 → Zn(NO 3) 2

13) Ca → CaCl 2 → CaCO 3 → Ca(HCO 3) 2 → Ca(NO 3) 2

14) Ca → Ca(OH) 2 → CaCO 3 → CaCl 2 → CaCO 3 → Ca(NO 3) 2

15) CuO → CuCl 2 → Cu(NO 3) 2 → CuO → CuSO 4 → Cu

16) CaO → Ca(OH) 2 → Ca(NO 3) 2 → Ca(NO 2) 2 → HNO 2 → NaNO 2

17) MgO → MgSO 4 → MgCl 2 → Mg(NO 3) 2 → Mg(OH) 2 → MgO

18) SO 2 → H 2 SO 3 → KHSO 3 → K 2 SO 3 → KHSO 3 → SO 2

19) P 2 O 5 → H 3 PO 4 → Ca(H 2 PO 4) 2 → Ca 3 (PO 4) 2 → Ca(H 2 PO 4) 2 → CaHPO 4

20) CO 2 → Ca(HCO 3) 2 → CaCO 3 → CaCl 2 → Ca(NO 3) 2 → CaSO 4

21) PbO → Pb(NO 3) 2 → PbO → Na 2 PbO 2 → Pb(OH) 2 → PbCl 2

22) ZnO → ZnSO 4 → Zn(OH) 2 → Na 2 ZnO 2 → Zn(OH) 2 → K 2

23) Al 2 O 3 →AlCl 3 → Al(OH) 3 →NaAlO 2 → Al(OH) 3 → K

24) ZnSO 4 → Zn(OH) 2 → ZnCl 2 → Zn → ZnO → Zn(NO 3) 2

25) AlCl 3 → Al(NO 3) 3 → Al(OH) 3 → NaAlO 2 → A1C1 3 → Al

26) Pb(NO 3) 2 → Pb(OH) 2 → PbO → Na 2 PbO 2 → Pb(OH) 2 → PbSO 4

27) Fe 2 (SO 4) 3 → FeCl 3 → Fe(OH) 3 → FeOH(NO 3) 2 → Fe(NO 3) 3 → Fe 2 O 3

28) К → KOH → KHSO 4 → K 2 SO 4 → KCl → KNO 3

29) Cu(OH) 2 → CuOHNO 3 → Cu(NO 3) 2 → CuSO 4 → CuCl 2 → Cu(NO 3) 2

30) CaCl 2 → Ca → Ca(OH) 2 → CaCl 2 → Ca(NO 3) 2 → CaSO 4

31) Сu → Cu(NO 3) 2 → Cu(OH) 2 → CuSO 4 → Al 2 (SO 4) 3 → A1C1 3

32) Mg → MgSO 4 → MgCl 2 → MgOHCl → Mg(OH) 2 → MgOHNO 3

33) CuSO 4 → CuCl 2 →ZnCl 2 → Zn(OH) 2 → Na 2 ZnO 2 → Zn(OH) 2

34) Hg(NO 3) 2 → Al(NO 3) 3 → Al 2 O 3 → NaAlO 2 → Al(OH) 3 → AlOHCl 2

35) ZnSO 4 → Zn(OH) 2 → ZnCl 2 → AlCl 3 → Al(OH) 3 → A1 2 O 3

36) CuCl 2 → Cu(OH) 2 → CuSO 4 → ZnSO 4 → Zn(OH) 2 → Na 2 ZnO 2

37) Fe(NO 3) 3 → FeOH(NO 3) 2 → Fe(OH) 3 → FeCl 3 → Fe(NO 3) 3 → Fe

38) Al 2 O 3 → AlCl 3 → Al(OH) 3 → NaAlO 2 → NaNO 3 → HNO 3

39) Mg(OH) 2 → MgSO 4 → MgCl 2 → Mg(NO 3) 2 → Mg(OH) 2 → MgO

40) сульфат алюминия → хлорид алюминия → нитрат алюминия → оксид алюминия → алюминат калия → гидроксид алюминия → гидроксохлорид алюминия → хлорид алюминия.

41) Na → NaOH → Na 3 PO 4 → NaNO 3 → HNO 3 → N 2 O 5

42) BaCO 3 → Ba(HCO 3) 2 → BaCO 3 → (BaOH) 2 CO 3 → BaO → BaSO 4

43) Cu → CuSO 4 → (CuOH) 2 SO 4 → Cu(OH) 2 → Cu(HSO 4) 2 → CuSO 4

44) барий → гидроксид бария → гидрокарбонат бария → хлорид бария → карбонат бария → хлорид бария → гидроксид бария

45) P → P 2 O 5 → H 3 PO 4 → Ca(H 2 PO 4) 2 → CaHPO 4 → Ca 3 (PO 4) 2

46) Cr → CrO → Cr 2 O 3 → NaCrO 2 → CrCl 3 → Cr(OH) 3 → Cr 2 O 3 → Cr

47) Cr 2 O 3 → CrCl 3 → Cr(OH) 3 → Na 3 → Cr 2 (SO 4) 3 → CrCl 3

48) K → KOH → KCl → KOH → K 2 SO 4 → KNO 3 → KNO 2

49) S → FeS → H 2 S → SO 2 → S → ZnS → ZnO → ZnCl 2 → Zn(OH) 2 → K 2

50) C → CO 2 → CO → CO 2 → Ca(HCO 3) 2 → CaCO 3 → CaCl 2

51) С → СО 2 → NaHCО 3 → Na 2 CО 3 → СО 2

52) S → SО 2 → K 2 SО 3 → KHSO 3 → K 2 SО 3

53) Сu → Сu(ОН) 2 → Cu(NO 3) 2 → CuO → Сu

54) Р 2 O 5 → Н 3 РO 4 → СаНРO 4 → Са(Н 2 РO 4) 2 → Са 3 (РO 4) 2

55) Fe → FeCl 2 → Fe(OH) 2 → FeSO 4 → Fe

56) Zn → ZnO → Zn(OH) 2 → Zn(NO 3) 2 → ZnO

57) CuS → SO 2 → KHSO 3 → CaSO 3 → SO 2

58) SO 2 → H 2 SO 4 → CuSO 4 → CuO → Cu(NO 3) 2

59) KHSO 3 → CaSO 3 → Ca(HSO 3) 2 → SO 2 → K 2 SO 4

60) SO 2 → CaSO 3 → SO 2 → NaHSO 3 → SO 2

61) NaHCO 3 → Na 2 CO 3 → NaCl → NaHSO 4 → Na 2 SO 4

62) К → КОН → KCl → KNO 3 → K 2 SO 4 →KCl

63) NaCl → Na → NaOH → Na 2 SO 4 → NaCl

64) Al → AlCl 3 → Al(OH) 3 → A1 2 O 3 → Al(OH) 3

65) CuO → Сu → CuCl 2 → CuSO 4 → CuS

66) Fe → FeSO 4 → Fe(OH) 2 → Fe → Fe(OH) 3

67) Fe → Fe(OH) 2 → FeCl 2 → Fe(NO 3) 2 → Fe

68) Fe(NO 3) 3 → Fe 2 O 3 → FeCl 3 → Fe(NO 3) 3 → Fe

69) CuO → CuSO 4 → Cu(OH) 2 → CuO → Сu

70) MgCO 3 → MgO → MgCl 2 → Mg(OH) 2 → Mg(NO 3) 2

71) Mg → Mg(OH) 2 → MgSO 4 → MgCO 3 → Mg(HCO 3) 2

72) CaO → Ca(OH) 2 → CaCl 2 → CaCO 3 →CO 2

73) CaCO 3 → Ca(HCO 3) 2 → CaCl 2 → Ca(NO 3) 2 → O 2

74) FeS → Fe 2 O 3 → Fe(OH) 3 → Fe 2 (SO 4) 3 → FeCl 3

75) КС1 → K 2 SO 4 → КОН → K 2 CO 3 → КОН

76) CuS → CuO → Cu(OH) 2 →CuSO 4 → Cu

77) Fe → Fe(OH) 3 → Fe(NO 3) 3 → FeCl 3 → Fe 2 (SO 4) 3

78) CuSO 4 → CuO → Cu(NO 3) 2 → CuO → CuS

79) ZnS → H 2 S → SO 2 → Na 2 SO 4 → NaOH

80) Al → Al(OH) 3 → A1 2 (SO 4) 3 → A1 2 O 3 → Al(OH) 3

81) CaCl 2 → CaCO 3 → Ca(HCO 3) 2 → CaCO 3 → CaSiO 3

82) S → ZnS → H 2 S → Ca(HSO 3) 2 → SO 2

83) Na 2 SO 4 → NaCl → HCl → CaCl 2 → Ca(NO 3) 2

84) Na 2 SO 3 →SO 2 → H 2 SO 4 → HCl → FeCl 2

85) С → Na 2 CO 3 → CaCO 3 → CaSiO 3 → H 2 SiO 3

86) P → P 2 O 5 → Ca(H 2 PO 4) 2 → CaHPO 4 → H 3 PO 4

87) Al → A1 2 O 3 → Al(OH) 3 → A1C1 3 → A1(NO 3) 3

88) HCl → CuCl 2 → Cl 2 → HCl → H 2

89) P 2 O 5 → Na 2 HPO 4 → Na 3 PO 4 → Ca 3 (PO 4) 2 → CaSO 4

90) NH 3 → NH 4 C1 → NH 3 ∙H 2 O → NH 4 HCO 3 → NH 3

91) NH 4 C1 → KC1 → HCl → CuCl 2 → Cu(OH) 2

92) NH 3 → NH 4 H 2 PO 4 → (NH 4) 2 HPO 4 → NH 3 → NH 4 NO 3

93) KOH → KHCO 3 → K 2 CO 3 → CO 2 → Ca(HCO 3) 2

94) Na → NaOH → NaHCO 3 → Na 2 SO 4 → NaOH

95) KNO 3 → K 2 SO 4 → КС1 → KNO 3 → KNO 2

96) Cl 2 → KC1 → K 2 SO 4 → KNO 3 → KHSO 4

97) FeSO 4 → FeS → SO 2 →KHSO 3 → K 2 SO 4

98) KOH → Cu(OH) 2 → CuSO 4 → Cu(OH) 2 → Cu

99) Fe 2 O 3 → FeCl 3 → Fe(OH) 3 → Fe(NO 3) 3 → Fe 2 O 3

100) Al → A1 2 O 3 → A1(NO 3) 3 → A1 2 O 3 → Al(OH) 3

101) CaO → CaCO 3 → CaSiO 3 → Ca(NO 3) 2 → O 2

102) Cu → Cu(OH) 2 → Cu → CuSO 4 → CuCl 2

103) H 2 S → SO 2 → ZnSO 4 → ZnS → ZnO

104) Cl 2 → NaCl → HCl → CuCl 2 → CuO

105) Cl 2 → FeCl 3 → Fe 2 O 3 → Fe(OH) 3 → Fe(NO 3) 3

106) P 2 O 5 → Ca 3 (PO 4) 2 → H 3 PO 4 → CaHPO 4 → Ca(H 2 PO 4) 2

107) ZnS → ZnO → Zn → ZnCl 2 → Zn(NO 3) 2

108) ZnO → ZnSO 4 → Zn(NO 3) 2 → ZnO → Zn(OH) 2

109) H 3 PO 4 → NH 4 H 2 PO 4 → (NH 4) 2 HPO 4 → Na 3 PO 4 → Ca 3 (PO 4) 2

110) CaCO 3 → Na 2 CO 3 → Na 3 PO 4 → NaH 2 PO 4 → Ca 3 (PO 4) 2

111) CaCl 2 → CaSO 3 → Ca(OH) 2 → CaCl 2 → Ca(NO 3) 2

112) NaOH → Na 2 CO 3 → NaHSO 4 → NaNO 3 → NaHSO 4

113) Na 2 SiO 3 → Na 2 CO 3 → Na 2 SO 4 →NaCl → Na 2 SO 4

114) KNO 3 → KHSO 4 → K 2 SO 4 → KCl → Na 2 SO 4

115) SiO 2 → K 2 SiO 3 → H 2 SiO 3 → SiO 2 → CaSiO 3

116) Cu → CuCl 2 → Cu(NO 3) 2 → NO 2 → HNO 3

117) Ca(NO 3) 2 → O 2 → SiO 2 → H 2 SiO 3 → SiO 2

118) P → H 3 PO 4 → Ca 3 (PO 4) 2 → CaHPO 4 → Ca(H 2 PO 4) 2

119) CuSO 4 → Cu → CuS → CuO → CuCl 2

120) Al → A1 2 (SO 4) 3 → Al(OH) 3 → A1C1 3 → A1(NO 3) 3

121) S → SO 3 → H 2 SO 4 → KHSO 4 → BaSO 4

122) N 2 O 5 → HNO 3 → Cu(NO 3) 2 → CuO → Cu(OH) 2

123) Al → A1 2 O 3 → Al(OH) 3 → A1 2 (SO 4) 3 → A1(NO 3) 3

124) Ca → Ca(OH) 2 → Ca(HCO 3) 2 → CaO → CaCl 2

125) NH 3 ∙H 2 O → NH 4 C1 → NH 3 → NH 4 HCO 3 → (NH 4) 2 CO 3

126) Cu(OH) 2 → H 2 O → HNO 3 → Fe(NO 3) 3 → Fe

127) SO 2 → Ca(HSO 3) 2 → CaCl 2 → Ca(OH) 2 → Ca(HCO 3) 2

128) NH 3 ∙H 2 O → NH 4 HCO 3 → CaCO 3 → CaSiO 3 → CaCl 2

129) CuSO 4 → Cu → CuO → Cu(OH) 2 → Cu

130) Fe(OH) 3 → Fe → FeCl 3 → Fe(NO 3) 3 → Fe

131) Zn → Zn(OH) 2 → Na 2 → Zn(OH) 2 → Na 2 ZnO 2 → Zn

132) Zn → ZnO → Na 2 ZnO 2 → Zn(OH) 2 → Na 2 → ZnCl 2

133) Zn → K 2 ZnO 2 → ZnSO 4 → K 2 → Zn(NO 3) 2 → ZnO

134) ZnO → Zn(OH) 2 → K 2 ZnO 2 → ZnSO 4 → ZnCl 2 → ZnO

135) Zn → Na 2 → Na 2 ZnO 2 → Zn(NO 3) 2 → ZnO → Zn

136) Al → K 3 → Al(OH) 3 → Na 3 → A1C1 3 → Al(OH) 3

137) Al 2 O 3 → KAlO 2 → Al(OH) 3 → Al 2 О 3 → Na 3 → Al 2 O 3

138) Al(OH) 3 → A1 2 O 3 → K 3 →Al 2 (SO 4) 3 → A1(NO 3) 3

139) A1C1 3 → K 3 → Al(NO 3) 3 → NaAlO 2 → Al 2 O 3

140) Be → Na 2 → Be(OH) 2 → Na 2 BeO 2 → BaBeO 2

ЭКСПЕРИМЕНТАЛЬНЫЕ ОПЫТЫ ПО ТЕМЕ «ОСНОВНЫЕ КЛАССЫ НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ»

ОПЫТ 1. Реакции нейтрализации.

а) Взаимодействие сильной кислоты и сильного основания.

Налить в фарфоровую чашку 5 мл 2 н раствора соляной кислоты и прибавлять к нему по каплям 2 н раствор гидроксида натрия. Раствор перемешивать стеклянной палочкой и испытать его действие на лакмус, перенося каплю раствора на лакмусовую бумажку. Нужно добиться нейтральной реакции (синяя и красная лакмусовая бумажка не изменяет окраску). Полученный раствор выпарить досуха. Что образовалось? Написать молекулярные и ионные уравнения реакций.

б) Взаимодействие слабой кислоты и сильного основания.

Налить в пробирку 2 мл 2 н раствора щелочи и добавить раствор уксусной кислоты до нейтральной реакции раствора. Написать молекулярные и ионные уравнения реакций. Объяснить, почему равновесие ионной реакции, в которой принимает участие слабый электролит (уксусная кислота), сдвигается в сторону образования молекул воды.

ОПЫТ 2. Амфотерность гидроксидов.

Из имеющихся в лаборатории реактивов получить осадок гидроксида цинка. Взболтать полученный осадок и отлить небольшие количества его в 2 пробирки. В одну из пробирок добавить раствор соляной кислоты, в другую – раствор гидроксида натрия (избыток). Что наблюдается? Написать уравнения соответствующих реакций в молекулярной и ионной форме.

ОПЫТ 3. Химические свойства солей.

а) Взаимодействие растворов солей с образованием труднорастворимого вещества.

Налить в пробирку 2 мл раствора карбоната натрия и добавить раствор хлорида бария до выпадения белого осадка. Написать уравнение химической реакции в ионном и молекулярном виде. Полученный осадок разделить на две части. В одну из пробирок налить раствор серной кислоты, в другую – гидроксида натрия. Сделать вывод о растворимости осадка в кислотах и щелочах.

б) Взаимодействие раствора соли с кислотами с образованием летучего соединения.

Налить в пробирку 2 мл раствора карбоната натрия и прилить небольшой объем раствора соляной кислоты. Что наблюдается? Написать уравнения химической реакции в ионном и молекулярном виде.

в) Взаимодействие растворов солей со щелочами с образованием летучего соединения.

В пробирку налить немного раствора какой-нибудь соли аммония, прибавить 1-2 мл раствора гидроксида натрия и нагреть до кипения. В пробирку с реакционной смесью внести влажную красную лакмусовую бумажку. Что наблюдается? Дать объяснение. Написать уравнения реакций.

г) Взаимодействиерастворов солей с более активными металлами, чем металл, входящий в состав соли.

Железный (стальной) гвоздь очистить тонкой наждачной бумагой. Затем опустить его в раствор сульфата меди. Через некоторое время наблюдать выделение меди на поверхности гвоздя. Записать соответствующее уравнение реакции в ионном и молекулярном виде.

ОПЫТ 4. Получение основных и кислых солей.

а) Получение гидроксокарбоната свинца.

К раствору ацетата свинца (II) добавить немного оксида свинца (II) и кипятить смесь в течение нескольких минут. Остывший раствор слить с осадка и пропустить через него ток углекислого газа. Что наблюдается? Осадок отфильтровать и высушить между листочками фильтровальной бумаги. Отметить цвет и характер полученного осадка гидроксокарбоната свинца. Написать уравнения реакций. Составить графическую формулу полученной соли.

б) Получение гидрокарбоната магния.

К очень сильно разбавленному раствору какой-нибудь соли магния добавить немного раствора карбоната натрия. Какое вещество выпадает в осадок? Раствор с осадком насытить углекислым газом. Наблюдать постепенное растворение осадка. Почему это происходит? Написать уравнения реакций.

ОПЫТ 5. Получение комплексных солей.

а) Образование соединений с комплексным катионом.

В пробирку с 2-3 мл раствора хлорида меди (II) прибавлять по каплям раствор аммиака до образования осадка гидроксида меди (II), а затем прилить избыток раствора аммиака до растворения осадка. Сравнить окраску ионов Сu 2+ с окраской полученного раствора. Присутствие каких ионов обусловливают окраску раствора? Написать уравнение реакции получения комплексного соединения.

б) Образование соединений с комплексным анионом.

К 1-2 мл раствора нитрата ртути (II) добавлять по каплям разбавленный раствор йодида калия до образования осадка HgI 2 . Затем прилить избыток раствора йодида калия до растворения осадка. Написать уравнения реакций получения комплексной соли.

ОПЫТ 6. Получение двойных солей (алюмокалиевых квасцов).

Взвесить 7,5 г Al 2 (SO 4) 3 ∙18H 2 O и растворить в 50 мл воды, взяв для этой цели достаточно большую фарфоровую чашку. Рассчитать по уравнению реакции и взвесить необходимую для реакции массу сульфата калия. Приготовить горячий насыщенный раствор сульфата калия и влить его при помешивании в фарфоровую чашку с раствором сульфата алюминия. Наблюдать через некоторое время выпадение кристаллов алюмокалиевых квасцов. По охлаждении и окончании кристаллизации слить маточный раствор, высушить кристаллы квасцов между листами фильтровальной бумаги и взвесить полученные кристаллы. Вычислить процент выхода.

РАСЧЕТНЫЕ ЗАДАЧИ

1. При пропускании избытка сероводорода через 16 г раствора сульфата меди (II) получено 1,92 г осадка. Найдите массовую долю сульфата меди в использованном растворе и объем израсходованного сероводорода.

2. Для полного осаждения меди в виде сульфида из 291 см 3 раствора сульфата меди (II) c массовой долей 10% был использован газ, полученный взаимодействием 17,6 г сульфида железа (II) с избытком соляной кислоты. Найдите плотность исходного раствора сульфата меди.

3. Газ, выделенный при взаимодействии раствора К 2 S с разбавленной серной кислотой, пропущен через избыток раствора нитрата свинца (II). Полученный осадок имеет массу 71,7 г. Найдите объем прореагировавшего раствора серной кислоты, если его плотность 1,176 г/см 3 , а массовая доля 25%.

4. К раствору, содержащему 8 г сульфата меди (II), прибавили раствор, содержащий 4,68 г сульфида натрия. Осадок отфильтровали, фильтрат выпарили. Определите массы веществ в фильтрате после выпаривания и массу осадка сульфида меди.

5. Некоторую массу сульфида железа (II) обработали избытком соляной кислоты. Полученный газ в реакции с 12,5 см 3 раствора NaOH с массовой долей 25% и плотностью 1,28 г/см 3 образовал кислую соль. Найдите массу исходного сульфида железа.

6. Сульфид железа (II) массой 176 г обработали избытком соляной кислоты, а полученный газ сожгли в избытке воздуха. Какой объем раствора КОН с массовой долей 40% и плотностью 1,4 г/см 3 нужен для полной нейтрализации полученного при сжигании газа?

7. При обжиге 100 г технического пирита получили газ, которым полностью нейтрализовали 400 см 3 раствора NaOH с массовой долей 25% и плотностью 1,28 г/см 3 . Определите массовую долю примесей в пирите.

8. К 2 г смеси железа, оксида железа (II) и оксида железа (III) добавили 16 см 3 раствора НС1 с массовой долей 20% и плотностью 1,09 г/см 3 . Для нейтрализации избытка кислоты потребовалось 10,8 см 3 раствора NaOH с массовой долей 10% плотностью 1,05 г/см 3 . Найдите массы веществ в смеси, если объем выделившегося водорода равен 224 см 3 (н.у.).

9. Имеется смесь Са(ОН) 2 , СаСO 3 и BaSO 4 массой 10,5 г. При обработке смеси избытком соляной кислоты выделилось 672 см 3 (н.у.) газа, а в реакцию вступило 71,2 г кислоты с массовой долей 10%. Определите массы веществ в смеси.

10. Имеется смесь хлорида бария, карбоната кальция и гидрокарбоната натрия. При растворении 10 г этой смеси в воде нерастворимый остаток равен 3,5 г. При прокаливании 20 г исходной смеси масса ее уменьшается на 5,2 г. Найдите массовые доли веществ в исходной смеси.

11. Имеется раствор, содержащий одновременно серную и азотную кислоты. Для полной нейтрализации 10 г этого раствора расходуется 12,5 см 3 раствора КОН с массовой долей 19% и плотностью 1,18 г/см 3 . При добавлении к 20 г этой же смеси раствора кислот избытка хлорида бария выпадает 4,66 г осадка. Найдите массовые доли кислот в смеси.

12. Весь хлороводород, полученный из 100 г смеси КС1 и KNO 3 , растворили в 71,8 см 3 воды. При прокаливании 100 г этой же смеси солей остается 93,6 г твердого остатка. Найдите массовую долю хлороводорода в воде.

13. При пропускании 2 м 3 воздуха (н.у.) через раствор Са(ОН) 2 получено 3 г осадка соли угольной кислоты. Найдите объемную и массовую доли СO 2 в воздухе.

14. Углекислый газ пропускают через суспензию, содержащую 50 г СаСO 3 . В реакцию вступило 8,96 дм 3 газа (н.у.). Какая масса СаСO 3 осталась в твердой фазе?

15. При добавлении воды к СаО его масса возросла на 30%. Какая часть СаО (в % по массе) была погашена?

16. Оксид свинца (II) массой 18,47 г нагрели в токе водорода. После реакции масса полученного свинца и непрореагировавшего оксида составила 18,07 г. Какая масса оксида свинца не вступила в реакцию?

17. Угарный газ пропущен через оксид железа (III) при нагревании. Масса твердого остатка после реакции на 2 г меньше исходной массы оксида железа. Какой объем СО вступил в реакцию (оксид восстанавливается полностью)?

18. Имеется 8,96 дм 3 (н.у.) смеси N 2 , CO 2 и SO 2 с относительной плотностью по водороду 25. После ее пропускания через избыток раствора КОН объем смеси уменьшился в 4 раза. Найдите объемы газов в исходной смеси.

19. В двух стаканах находится по 100 г раствора НС1 с массовой долей 2,5%. В один стакан добавили 10 г СаСO 3 , в другой – 8,4 г MgCO 3 . Как будет отличаться масса стаканов после реакции?

20. Какой объем (н.у.) сернистого газа надо пропустить через 200 см 3 раствора с массовой долей NaOH 0,1% и плотностью 1 г/см 3 , чтобы получить кислую соль?

21. Какой максимальный объем (н.у.) углекислого газа может поглотить 25 см 3 раствора с массовой долей NaOH 25% и плотностью 1,1 г/см 3 ?

22. Каким минимальным объемом раствора с массовой долей KOH 20% и плотностью 1,19 г/см 3 можно поглотить весь углекислый газ, полученный при полном восстановлении 23,2 г магнетита угарным газом?

23. Какая минимальная масса КОН должна прореагировать с 24,5 г ортофосфорной кислоты, чтобы продуктом был только дигидрофосфат калия?

24. Какую минимальную массу Са(ОН) 2 надо добавить к 16 г раствора гидрокарбоната кальция с массовой долей соли 5% для получения средней соли?

25. Какую массу гидрофосфата калия надо добавить в раствор, содержащий 12,25 г Н 3 РO 4 , чтобы после этого раствор содержал только дигидрофосфат калия?

26. В растворе в виде суспензии содержалось 56,1 г смеси карбонатов кальция и магния. Для превращения их в гидрокарбонаты затратили весь углекислый газ, полученный сжиганием 7 дм 3 (н.у.) этана. Найдите массу карбоната кальция в исходной смеси.

27. Чтобы перевести в среднюю соль 9,5 г смеси гидро- и дигидрофосфата натрия, необходимо 10 см 3 раствора с массовой долей NaOH 27,7% и плотностью 1,3 г/см 3 . Найдите массу гидрофосфата в смеси.

28. При пропускании углекислого газа через раствор, содержащий 6 г NaOH, получили 9,5 г смеси кислой и средней солей. Найдите объем затраченного углекислого газа.

29. После пропускания 11,2 дм 3 (н.у.) СO 2 через раствор КОН получили 57,6 г смеси кислой и средней солей. Найдите массу средней соли.

30. Какую массу ортофосфорной кислоты надо нейтрализовать, чтобы получить 1,2 г дигидро- и 4,26 г гидрофосфата натрия?

31. К раствору серной кислоты прибавили NaOH и получили 3,6 г гидросульфата и 2,84 г сульфата натрия. Определите химические количества кислоты и щелочи, вступивших в реакцию.

32. После пропускания хлороводорода через 200 см 3 раствора NaOH с массовой долей 10% и плотностью 1,1 г/см 3 массовая доля NaOH в полученном растворе снизилась вдвое. Определите массовую долю NaCl в образовавшемся растворе.

33. На растворение 14,4 г смеси меди и ее оксида (II) затрачено 48,5 г раствора с массовой долей HNO 3 80%. Найдите массовые доли меди и оксида в исходной смеси.

34. Оксид натрия массой 6,2 г растворили в 100 см 3 воды и получили раствор № 1. Затем к этому раствору прибавляли соляную кислоту с массовой долей 10% до тех пор, пока среда не стала нейтральной, и получили раствор № 2. Определите:

1) массовые доли веществ в растворах № 1, 2;

2) массу раствора НС1, пошедшую на нейтрализацию раствора № 1.

35. Взаимодействуют 3 г цинка с 18,69 см 3 раствора НС1 с массовой долей14,6% и плотностью 1,07 г/см 3 . Полученный газ при нагревании пропускают над раскаленным СuО массой 4 г. Какая масса меди при этом получается?

36. Газ, выделившийся после обработки гидрида кальция избытком воды, пропустили над FeO. В результате масса оксида уменьшилась на 8 г. Найдите массу СаН 2 , обработанную водой.

37. При прокаливании образца СаСO 3 его масса уменьшилась на 35,2%. Твердые продукты реакции растворили в избытке соляной кислоты и получили 0,112 дм 3 (н.у.) газа. Определите массу исходного образца карбоната кальция.

38. Разложили нитрат меди, а полученный оксид меди (II) полностью восстановили водородом. Полученные при этом продукты пропустили через трубку с Р 2 O 5 , причем масса трубки после этого возросла на 3,6 г. Какой минимальный объем серной кислоты с массовой долей 88% и плотностью 1,87 г/см 3 нужен для растворения полученной в опыте меди и какова масса разложившейся соли?

39. При поглощении оксида азота (IV) избытком раствора КОН на холоде в отсутствии кислорода получено 40,4 г KNO 3 . Какое вещество еще образовалось и какова его масса?

40. Для нейтрализации 400 г раствора, содержащего соляную и серную кислоты, израсходовано 287 см 3 раствора гидроксида натрия с массовой долей 10% и плотностью 1,115 г/см 3 . Если к 100 г исходного раствора прилить избыток раствора хлорида бария, то выпадет 5,825 г осадка. Определите массовые доли кислот в исходном растворе.

41. После пропускания углекислого газа через раствор гидроксида натрия получили 13,7 г смеси средней и кислой солей. Для превращения их в хлорид натрия нужно 75 г соляной кислоты с массовой долей HCl 10%. Найдите объем поглощенного углекислого газа.

42. Смесь соляной и серной кислот с общей массой раствора 600 г с одинаковыми массовыми долями кислот обработали избытком гидрокарбоната натрия и получили 32,1 дм 3 газа (н. у.). Найдите массовые доли кислот в исходной смеси.

43. Для нейтрализации 1 дм 3 раствора NaOH израсходовано 66,66 см 3 раствора HNO 3 с массовой долей 63% и плотностью 1,5 г/см 3 . Какой объем раствора серной кислоты с массовой долей 24,5% и плотностью 1,2 г/см 3 потребовался бы для нейтрализации того же количества щелочи?

44. В каком объемном соотношении следует взять раствор серной кислоты с массовой долей 5% и плотностью 1,03 г/см 3 и раствор гидроксида бария с массовой долей 5% и плотностью 1,1 г/см 3 для полной нейтрализации? Ответ представьте как частное от деления объема раствора щелочи на раствор кислоты.

45. Рассчитайте минимальный объем раствора аммиака с плотностью 0,9 г/см 3 и массовой долей 25%, который необходим для полного поглощения углекислого газа, полученного при разложении 0,5 кг природного известняка с массовой долей карбоната кальция, равной 92%.

46. Для полного превращения 2,92 г смеси гидроксида и карбоната натрия в хлорид необходимо 1,344 дм 3 хлороводорода (н.у.). Найдите массу карбоната натрия в смеси.

47. К 25 г раствора сульфата меди (II) с массовой долей16% прибавили некоторое количество раствора гидроксида натрия с массовой долей16%. Образовавшийся осадок отфильтровали, после чего фильтрат имел щелочную реакцию. Для полной нейтрализации фильтрата потребовалось 25 см 3 раствора серной кислоты с молярной концентрацией 0,1 моль/дм 3 раствора. Вычислите массу прибавленного раствора гидроксида натрия.

48. Вещество, полученное при полном восстановлении СuО массой 15,8 г водородом объемом 11,2 дм 3 (н.у), растворили при нагревании в концентрированной серной кислоте. Какой объем газа (н.у.) выделился в результате реакции?

49. Для полной нейтрализации 50 см 3 соляной кислоты с массовой долей HCl 20% и плотностью 1,10 г/см 3 был использован раствор гидроксида калия с массовой долей KOH 20%. Какое химическое количество воды содержится в полученном растворе?

50. Газ, полученный при пропускании избытка СО 2 над 0,84 г раскаленного угля, направлен в реакцию с 14,0 г нагретого оксида меди (II). Какой объем раствора азотной кислоты с массовой долей 63% и плотностью 1,4 г/см 3 нужен для полного растворения полученного в последней реакции вещества?

51. При прокаливании до постоянной массы нитрата меди (II) масса соли уменьшилась на 6,5 г. Какая масса соли подверглась разложению?

52. При действии избытка соляной кислоты на смесь алюминия с неизвестным одновалентным металлом выделилось 6,72 дм 3 (н.у.) газа, и масса смеси уменьшилась вдвое. При обработке остатка разбавленной азотной кислотой выделилось 0,373 дм 3 (н.у.) NO. Определите неизвестный металл.

53. Масса образца мела равна 105 г, а химическое количество элемента кислорода в его составе равно 1 моль. Определите массовую долю СаСO 3 в образце мела (кислород входит только в состав карбоната кальция).

54. При взаимодействии оксида серы (VI) с водой получили раствор с массовой долей серной кислоты 25%. При добавлении к этому раствору избытка Ва(ОН) 2 выпал осадок массой 29,13 г. Какие массы SO 3 и Н 2 O были затрачены на образование раствора кислоты?

55. При пропускании SO 2 через 200 г раствора с массовой долей NaOH 16% образовалась смесь солей, в том числе 41,6 г кислой соли. Какая масса серы, содержащей 4,5% примесей по массе, использовалась для получения SО 2 ? Какова масса средней соли?

56. На взаимодействие с 80 г раствора Ca(NО 3) 2 понадобилось 50 г раствора Na 2 CО 3 . Выпавший осадок отделили, при обработке его избытком соляной кислоты выделилось 2,24 дм 3 (н.у.) газа. Каковы массовые доли солей в исходных растворах? Какова массовая доля нитрата натрия в растворе после отделения осадка?

57. При взаимодействии цинка с серной кислотой образовалось 10 дм 3 (н.у.) смеси SО 2 и H 2 S с относительной плотностью по аргону 1,51. Какое химическое количество цинка растворили? Какова массовая доля SО 2 в смеси газов?

58. Образец смеси цинковых и алюминиевых опилок общей массой 11 г растворили в избытке раствора щелочи. Определите объем (н.у.) выделившегося газа, если массовая доля цинка в смеси равна 30%.

59. Гидроксид натрия массой 4,0 г сплавили с гидроксидом алюминия массой 9,8 г. Рассчитайте массу полученного метаалюмината натрия.

60. При обработке 10 г смеси меди и алюминия концентрированной азотной кислотой при комнатной температуре выделилось 2,24 дм 3 газа (н.у.). Какой объем (н.у.) газа выделится при обработке такой же массы смеси избытком раствора КОН?

61. Сплав меди и алюминия массой 20 г обработали избытком щелочи, нерастворившийся остаток растворили в концентрированной азотной кислоте. Полученную при этом соль выделили, прокалили до постоянной массы и получили 8 г твердого остатка. Определите объем израсходованного раствора NaOH с массовой долей 40% и плотностью 1,4 г/см 3).

62. Смесь алюминия и оксида металла (II) (оксид не амфотерен) массой 39 г обработали избытком раствора КОН, выделившийся газ сожгли и получили 27 г воды. Нерастворившийся остаток полностью растворили в 25,2 см 3 раствора с массовой долей НС1 36,5% и плотностью 1,19 г/см 3). Определите оксид.

63. Смесь стружек цинка и меди обработали избытком раствора КОН, при этом выделился газ объемом 2,24 дм 3 (н.у.). Для полного хлорирования такого же образца металлов потребовался хлор объемом 8,96 дм 3 (н.у). Рассчитайте массовую долю цинка в образце.

64. Смесь опилок железа, алюминия и магния массой 49 г обработали избытком разбавленной H 2 SO 4 , получив при этом 1,95 моль газа. Другую порцию той же смеси массой 4,9 г обработали избытком раствора щелочи, получили 1,68 дм 3 (н.у.) газа. Найдите массы металлов в смеси.

65. Какая масса осадка образуется при сливании растворов, содержащих 10 г NaOH и 13,6 г ZnCl 2 ?

66. Имеются две одинаковые по мольному составу порции смеси Al, Mg, Fe, Zn, каждая массой 7,4 г. Одну порцию растворили в соляной кислоте и получили 3,584 дм 3 газа (н.у.), другую – в растворе щелочи и получили 2,016 дм 3 газа (н.у.). Известно, что в обеих смесях на один атом А1 приходится 3 атома Zn. Найдите массы металлов в смеси.

67. Смесь меди, магния и алюминия массой 1 г обработали избытком соляной кислоты. Раствор отфильтровали, к фильтрату добавили избыток раствора NaOH. Полученный осадок отделили и прокалили до постоянной массы, равной 0,2 г. Нерастворившийся после обработки соляной кислотой остаток прокалили на воздухе и получили 0,8 г вещества черного цвета. Найдите массовую долю алюминия в смеси.

68. При нагревании в токе кислорода сплава цинка, магния и меди масса смеси возросла на 9,6 г. Продукт частично растворяется в щелочи, причем для растворения нужно 40 см 3 раствора с массовой долей КОН 40% и плотностью 1,4 г/см 3 . Для реакции с такой же порцией сплава нужно 0,7 моль НС1. Найдите химические количества металлов в сплаве.

69. Сплав меди с цинком массой 5 г обработали избытком раствора NaOH. Затем твердый остаток отделили и обработали концентрированной HNO 3 , полученную при этом соль выделили, прокалили до постоянной массы и получили 2,5 г твердого остатка. Определите массы металлов в сплаве.

70. Сплав меди и алюминия массой 12,8 г обработали избытком соляной кислоты. Нерастворившийся остаток растворили в концентрированной азотной кислоте, полученный раствор упарили, сухой остаток прокалили до постоянной массы и получили 4 г твердого вещества. Определите массовую долю меди в сплаве.

71. В каком соотношении масс следует взять две порции А1, чтобы при внесении одной в раствор щелочи, а другой – в соляную кислоту выделились равные объемы водорода?

72. При обработке смеси алюминия и оксида меди (II) избытком раствора КОН выделилось 6,72 дм 3 (н.у.) газа, а при растворении такой же порции смеси в концентрированной HNO 3 при комнатной температуре получили 75,2 г соли. Найдите массу исходной смеси веществ.

73. Какую массу оксида меди (II) можно восстановить водородом, полученным при взаимодействии избытка алюминия с 139,87 см 3 раствора с массовой долей NaOH 40% и плотностью 1,43 г/см 3 ?

74. При полном окислении 7,83 г сплава двух металлов образовалось 14,23 г оксидов, при обработке которых избытком щелочи осталось нерастворенным 4,03 г осадка. Определите качественный состав металлов, образующих сплав, если их катионы имеют степень окисления +2 и +3, а мольное соотношение оксидов 1:1 (считайте, что оксид металла со степенью окисления +3 обладает амфотерными свойствами).

75. Две порции алюминия, имеющие одинаковые массы, растворили: одну в растворе гидроксида калия, другую – в соляной кислоте. Как относятся между собой объемы выделившихся газов (н.у.)?

76. Сплав меди с алюминием массой 1,000 г обработали избытком раствора щелочи, нерастворившийся осадок растворили в азотной кислоте, затем раствор выпарили, остаток прокалили до постоянной массы. Масса нового остатка равна 0,398 г. Каковы массы металлов в сплаве?

77. Сплав цинка и меди массой 20 г обработали избытком раствора NaOH с массовой долей 30% и плотностью 1,33 г/см 3 . Твердый остаток выделили и обработали избытком концентрированного раствора HNO 3 . Образовавшуюся при этом соль выделили и прокалили до постоянной массы. Масса твердого остатка составила 10,016 г. Вычислите массовые доли металлов в сплаве и израсходованный объем раствора щелочи.

78. Сплав меди и алюминия массой 2 г обработали избытком раствора щелочи. Остаток отфильтровали, промыли, растворили в HNО 3 , раствор выпарили и прокалили до постоянной массы. Масса остатка после прокаливания составила 0,736 г. Рассчитайте массовые доли металлов в сплаве.

79. На хлорирование смеси железа, меди и алюминия необходимо 8,96 дм 3 хлора (н.у.), а на взаимодействие такой же навески с хлороводородом его нужно 5,6 дм 3 (н.у.). При взаимодействии такой же массы смеси металлов со щелочью выделяется 1,68 дм 3 (н.у.) газа. Найдите химические количества металлов в смеси.

80. Гидрид калия массой 5,0 г растворили в воде объемом 80 см 3 и в полученный раствор внесли алюминий массой 0,81 г. Найдите массовые доли веществ в полученном растворе с точностью до тысячных долей процента.


СПИСОК ЛИТЕРАТУРЫ

1. Баранник, В.П. Современная русская номенклатура неорганических соединений / В.П. Баранник // Журнал Всесоюзного химического общества им. Д.И. Менделеева. – 1983. – т. XXVIII. – С. 9–16.

2. Врублевский, А.И. Тренажер по химии / А.И. Врублевский. – 2-е изд., перераб. и доп. – Минск: Красико-Принт, 2007. – 624 с.

3. Глинка, Н.Л. Задачи и упражнения по общей химии: учеб. пособие для вузов / Под ред. В.А. Рабиновича и Х.М. Рубиной. – М. : Интеграл-Пресс, 2004. – 240 с.

4. Лидин, Р.А. Задачи по общей и неорганической химии: учеб. пособие для студентов высш. учеб. заведений / Р.А. Лидин, В.А. Молочко, Л.Л. Андреева; под ред. Р.А. Лидина. – М. : ВЛАДОС, 2004. – 383 с.

5. Лидин, Р.А. Основы номенклатуры неорганических веществ / Р.А. Лидин [и др.]; под ред. Б.Д. Степина. – М.: Химия, 1983. – 112 с.

6. Степин, Б.Д. Применение правил ИЮПАК по номенклатуре неорганических соединений на русском языке / Б.Д. Степин, Р.А. Лидин // Журнал Всесоюзного химического общества им. Д.И. Менделеева. – 1983. – т. XXVIII. – С. 17–20.


Введение ……………………………………………………………… Общие правила номенклатуры неорганических веществ………….. Оксиды ………………………………………………………………… Основные оксиды ……………………………………………………... Кислотные оксиды ……………………………………………………. Амфотерные оксиды ………………………………………………….. Получение оксидов …………………………………………………… Упражнения для самостоятельной работы по теме «Оксиды» ……………………………………………………. Кислоты ………………………………………………………………. Упражнения для самостоятельной работы по теме «Кислоты» …………………………………………………… Основания …………………………………………………………….. Упражнения для самостоятельной работы по теме «Основания» …………………………………………………. Соли ……………………………………………………………………. Упражнения для самостоятельной работы по теме «Соли» ………………………………………………………... Генетическая связь между классами неорганических соединений ………………………………………….. Упражнения для самостоятельной работы по теме «Генетическая связь между классами неорганических соединений» ………………………………………… Экспериментальные опыты теме «Осноные классы неорганических соединений …………………….. Расчетные задачи ……………………………………………………… Список литературы ……………………………………………………

Похожая информация.


Материальный мир, в котором мы живем и кро­хотной частичкой которого мы являемся, един и в то же время бесконечно разнообразен. Единство и многообразие химических веществ этого мира наиболее ярко проявляется в генетической связи веществ, которая отражается в так называемых генетических рядах. Выделим наиболее характерные признаки таких рядов.

1. Все вещества этого ряда должны быть обра­зованы одним химическим элементом. Например, ряд, записанный с помощью следующих формул:

2. Вещества, образованные одним и тем же эле­ментом, должны принадлежать к различным клас­сам, т. е. отражать разные формы его существования.

3. Вещества, образующие генетический ряд од­ного элемента, должны быть связаны взаимопрев­ращениями. По этому признаку можно различать полные и неполные генетические ряды.

Например, приведенный выше генетический ряд брома будет неполным, незавершенным. А вот следующий ряд:

уже можно рассматривать как полный: он начинал­ся простым веществом бромом и им же закончился.

Обобщая сказанное выше, можно дать следую­щее определение генетического ряда.

Генетический ряд - это ряд веществ - пред­ставителей разных классов, являющихся соедине­ниями одного химического элемента, связанных взаимопревращениями и отражающих общность происхождения этих веществ или их генезис.

Генетическая связь - понятие более общее, чем генетический ряд, который является пусть и ярким, но частным проявлением этой связи, реализующейся при любых взаимных превращени­ях веществ. Тогда, очевидно, под это определение подходит и первый приведенный ряд веществ.

Существует три разновидности генетических ря­дов:

Наиболее богат ряд металла, у которого проявляются разные сте­пени окисления. В качестве примера рассмотрим генетический ряд железа со степенями окисления +2 и +3:

Напомним, что для окисления железа в хлорид железа (II) нужно взять более слабый окислитель, чем для получения хлорида железа (III):

Аналогично ряду металла более богат связями ряд неметалла с разными степенями окисления, например, генетический ряд серы со степенями окисления +4 и +6:

Затруднение может вызвать лишь последний переход. Руководствуйтесь правилом: чтобы полу­чить простое вещество из окисленного соединения элемента, нужно взять для этой цели самое вос­становленное его соединение, например, летучее водородное соединение неметалла. В нашем случае:

По этой реакции в природе из вулканических газов образуется сера.

Аналогично для хлора:

3. Генетический ряд металла, которому соот­ветствуют амфотерные оксид и гидроксид, очень богат связями, т. к. они проявляют в зависимости от условий то кислотные, то основные свойства.

Например, рассмотрим генетический ряд цинка:

Генетическая связь между классами неорганических веществ

Характерными являются реакции между представителями разных генетических рядов. Вещества из одного генетического ряда, как правило, не вступают во взаимодействия.

Например:
1. металл + неметалл = соль

Hg + S = HgS

2Al + 3I 2 = 2AlI 3

2. основной оксид + кислотный оксид = соль

Li 2 O + CO 2 = Li 2 CO 3

CaO + SiO 2 =CaSiO 3

3. основание + кислота=соль

Cu(OH) 2 + 2HCl =CuCl 2 + 2H 2 O

FeCl 3 + 3HNO 3 = Fe(NO 3) 3 + 3HCl

соль кислота соль кислота

4. металл — основной оксид

2Ca + O 2 = 2CaO

4Li + O 2 =2Li 2 O

5. неметалл — кислотный оксид

S + O 2 = SO 2

4As + 5O 2 = 2As 2 O 5

6. основной оксид — основание

BaO + H 2 O = Ba(OH) 2

Li 2 O + H 2 O = 2LiOH

7. кислотный оксид — кислота

P 2 O 5 + 3H 2 O = 2H 3 PO 4

SO 3 + H 2 O =H 2 SO 4

  • Сформировать понятие о генетической связи и генетическом ряде.
  • Рассмотреть генетические ряды металлов и неметаллов.
  • Выяснить генетическую связь между классами неорганических соединений.
  • Продолжить формировать умения пользоваться таблицей растворимости и периодической системой Д.И.Меделеева для прогнозирования возможных химических реакций, а также применять полученные знания по темам свойства классов веществ.
  • Повторить основные классы неорганических соединений и их классификацию.
  • Развивать познавательный интерес к предмету, умение быстро и четко отвечать на вопросы.
  • Продолжать формировать умения логически мыслить, работать с учебником, работать с полученной информацией.
  • Закрепить и систематизировать знания по данной теме.

Оборудование: Периодическая система Д.И. Менделеева, кодоскоп, таблица “Кислоты”, схема “Генетическая связь”, карточки для игры “Конвейер”, “Творческое задание”.

Реактивы: В штативах 3 пробирки с растворами HCI, NaCI, NaOH, универсальная индикаторная бумажка. На столе учителя: Na, H 2 O кристаллизаторе, фенолфталеин, H 2 SO 4 .

Класс разбит на 4 микрогруппы: “Оксиды”, “Кислоты”, “Соли”, “Основания”.

Ход урока

I. Организационный момент.

1. Дисциплина.
2. Готовность класса к уроку.
3. Постановка цели урока, мотивация.

II. Основная часть.

1. Целевая установка урока

Другого ничего в природе нет
Ни здесь, ни там в космических глубинах.
Все – от песчинок малых – до планет
Из элементов состоит единых.

Как формула, как график трудовой,
Строй менделеевской системы строгой,
Вокруг тебя творится мир живой,
Входи в него руками трогай.

Сегодня мы собрались здесь, чтобы подвергнуть испытанию лучших восьмиклассников нашей школы и ответить на вопрос: “Достойны ли они, стать гражданами великой химической страны?” Страна эта древняя и волшебная, хранящая множество загадок. Отгадать многие из них еще не удавалось ни одному человеку. Лишь самым, умным, смелым и настойчивым эта страна приоткрывает свои тайны. Итак, начнем!

Итак, изучив тему “Важнейшие классы неорганических соединений” вы получили представление о том, что неорганические соединения многообразны и взаимосвязаны. На уроке мы с вами рассмотрим небольшие фрагменты взаимопревращений веществ, вспомним классификацию неорганических веществ, поговорим о единстве и многообразии химических веществ.

Задача нашего урока – обобщить сведения о веществах, об отдельных классах неорганических соединений и их классификации в целом, закрепить знания о генетических рядах, генетической связи, взаимодействии вещества разных классов, научиться умению применять знания на практике.

Запишите в тетрадях тему нашего урока “Генетическая связь между неорганическими соединениями”.

Но, сначала скажите о каких веществах идет речь (название, формула)?

  1. На суку сидит сова,
    Выдыхает _____________________________
  2. Сапоги мои того,
    Пропускают ___________________________
  3. Его все знают,
    В магазине покупают,
    Без него не сваришь ужин -
    В малых дозах в блюдах нужен ___________
  4. Флакон с веществом, обычно имеется в каждой квартире,
    С рожденья ребенок любой с ним знаком,
    Едва лишь покинет он с мамой роддом,
    Ею искупают в ванночке с _________
  5. Что за чудо посмотри,
    По доске он проезжает,
    За собой след оставляет. ____________________
  6. Если нет у вас для теста разрыхлителя
    вы вместо него.
    Положите в пироги. ________________________

Переведите с химического языка на

  1. Не все то аурум, что блестит.
  2. Куй феррум, пока горячо.
    _____________________________________________________________
  3. Слово – аргентум, а молчание – аурум.
    _____________________________________________________________
  4. 5.Купрумного гроша не стоит.
    _____________________________________________________________
  5. Стойкий станумный солдатик.
    _____________________________________________________________
  6. С тех пор много Н 2 О утекло.
    _____________________________________________________________

Все эти вещества относятся, к какому то классу неорганических веществ. Ответьте на вопрос:

– Как распределяются по классам на основе состава и свойств неорганические вещества?
– Назовите известные вам классы неорганических соединений

По микрогруппам:

– Дайте определения.
Ученики дают определения веществам.

Классификация данных классов веществ.
Ученики дают ответы.

На слайде:

Из предложенного перечня неорганических соединений выберите формулы:
1 группа – оксиды,
2 группа – кислоты,
3 группа – соли.
4 группа – основания.

Назовите эти вещества.

Ученики выполняют задание в тетрадях по микрогруппам.

Правильный ответ:

А теперь поиграем с вами в игру “крестики – нолики”.

Слайд 19. Приложения 1.

Распределите вещества, формулы которых приведены в таблице по классам. Из букв, соответствующим правильным ответам, получите фамилию великого русского ученого

Формулы Оксиды Кислоты Основания Соли
K 2 O М А Ш А
H 2 CO 3 П Е Т Р
P 2 O 5 Н И М А
CuSO 4 П О С Д
Ca(OH) 2 Л И Е С
Fe(NO 3) 3 А Н У Л
SO 2 Е Л З А
H 3 PO 4 Н Е Л С
Na 3 PO 4 Ч У М В

Ответ: Менделеев.

Проблемное задание.

Могут ли разные классы неорганических соединений взаимодействовать друг с другом?

Выделить признаки генетического ряда:

Ca Ca(OH) 2 CaCO 3 CaO CaSO 4 CaCl 2 Ca ?

  1. вещества разных классов;
  2. разные вещества образованы одним химическим элементом;
  3. разные вещества одного химического элемента связаны взаимопревращениями.

Между классами существует важная связь, которую называют генетической ("генезиз" по-гречески обозначает "происхождение"). Эта связь заключается в том, что из веществ одного класса можно получить вещества других классов.

Генетическим называют ряд веществ – представителей разных классов неорганических соединений, являющихся соединениями одного и того же химического элемента, связанного взаимопревращениями и отражающего общность происхождения этих веществ.

Генетический ряд отражает взаимосвязь веществ разных классов, в основу которых положен один и тот же химический элемент.

Генетическая связь – связь между веществами разных классов, образованных одним химическим элементом, связанных взаимопревращениями и отражающая единство их происхождения.

Существует два основных пути генетических связей между веществами: один из них начинается металлами, другой – неметаллами.
Среди металлов также можно выделить две разновидности рядов:

1. Генетический ряд, в котором в качестве основания выступает щелочь. Этот ряд можно представить с помощью следующих превращений:

металл--основный оксид--щелочь–соль

Например: K--K 2 O--KOH--KCl.

2 . Генетический ряд, где в качестве основания выступает нерастворимое основание, тогда ряд можно представить цепочкой превращений:

металл--основный оксид--соль--нерастворимое основание--основный оксид--металл.

Например: Cu--CuO--CuCl 2 --Cu(OH) 2 --CuO-->Cu

Среди неметаллов также можно выделить две разновидности рядов:
1 . Генетический ряд неметаллов, где в качестве звена ряда выступает растворимая кислота.

Цепочку превращений можно представить в следующем виде:
неметалл--кислотный оксид--растворимая кислота--соль.

Например:
P--P 2 O 5 --H 3 PO 4 --Na 3 PO 4 .
2 . Генетический ряд неметаллов, где в качестве звена ряда выступает нерастворимая кислота:
неметалл--кислотный оксид--соль--кислота--кислотный оксид–неметалл

Например: Si--SiO 2 --Na 2 SiO 3 --H 2 SiO 3 --SiO 2 --Si.

Осуществить превращения по микрогруппам.

Физкультминутка “Рыжий кот”.

Решение задачи.

Однажды Юх проводил эксперименты по измерению электропроводности растворов разных солей. На его лабораторном столе стояли химические стаканы с растворами KCl, BaCl 2 , K 2 CO 3 , Na 2 SO 4 и AgNO 3 . На каждом стакане была аккуратно приклеена этикетка. В лаборатории жил попугай, клетка которого запиралась не очень хорошо. Когда Юх, поглощенный экспериментом, оглянулся на подозрительный шорох, он с ужасом обнаружил, что попугай, грубо нарушая правила техники безопасности, пытается пить из стакана с раствором BaCl 2 . Зная, что все растворимые соли бария чрезвычайно ядовиты, Юх быстро схватил со стола стакан с другой этикеткой и насильно влил раствор в клюв попугаю. Попугай был спасен. Стакан с каким раствором был использован для спасения попугая?

BaCl 2 + Na 2 SO 4 = BaSO 4 (осадок) + 2NaCl (сульфат бария настолько малорастворим, что не способен быть ядовитым, как некоторые другие соли бария).

Демонстрационный эксперимент. Учитель показывает в пробирках образцы:

1 – кусочек кальция, 2 – негашеная известь, 3 – гашеная известь, 4 – гипс задает вопрос:

“Что общего между этими образцами?” и записывает цепочку из формул представленных образцов.

Ca CaO Ca(OH) 2 CaSO 4

Хорошо, ребята! Подумайте, как с помощью химических реакций можно перейти от простого вещества к сложному, от одного класса соединений к другим. Давайте проведем эксперимент, доказывающий присутствие атомов меди в разных ее соединениях. По ходу эксперимента запишите цепочку превращений. Назовите типы химических реакций.

Работа выполняется по инструктивной карте.

Соблюдайте правила техники безопасности!

Инструктивная карта.

Лабораторная работа: “Практическое осуществление цепочки химических превращений”.

Проверьте наличие оборудования и реактивов на рабочих местах.

Оборудование: штатив для пробирок, спиртовка, спички, зажим для пробирок, тигельные щипцы.

Реактивы и материалы: раствор соляной кислоты (1:2), медная проволока, железный гвоздь или скрепка, нитки.

Выполнение работы.

Проведите реакции, в которых осуществляются химические превращения.

Медная проволока оксид меди(II) хлорид меди(II) медь

Прокаливайте медную проволоку, удерживая ее тигельными щипцами, в верхней части пламени спиртовки (1–2мин). Что наблюдаете?

Аккуратно удалите черный налет с проволоки и поместите его в пробирку. Отметьте цвет вещества.

Прилейте в пробирку в пробирку 1 мл раствора соляной кислоты (1:2). Для ускорения реакции слегка нагрейте ее содержимое. Что наблюдаете?

Осторожно (почему?) погрузите в пробирку с раствором железный гвоздь (скрепку).

Через 2–3 мин извлеките гвоздь из раствора и опишите произошедшие с ним изменения.

Образованием какого вещества они вызваны?

Опишите и сравните цвет образовавшегося и исходного растворов.

Приведите рабочее место в порядок.

Внимание! Раствор с оксидом меди нагревать очень осторожно, держа пробирку высоко над пламенем спиртовки.

III. Заключение.

Учитель. Понятия “оксид”, “кислота”, “основание”, “соль” образуют систему, находящуюся в тесной взаимосвязи, она раскрывается при получении веществ одного класса из веществ другого класса. Она проявляется в процессе взаимодействия веществ и активно используется в практической деятельности человека. Как вы думаете, ребята, достигли мы цели, которую ставили в начале урока?

V. Домашнее задание.

Слайды 30, 31.

VI. Подведение итогов урока, оценивание, рефлексия.

Учитель. Ребята, пришло время подводить итоги. Чему вы сегодня научились, что узнали нового, что вы делали на уроке?

Ученики дают ответы.


Close