Любая кислота представляет собой сложное вещество, молекула которого содержит один или несколько атомов водорода и кислотный остаток.

Формула серной кислоты - H2SO4. Следовательно, в состав молекулы серной кислоты входят два атома водорода и кислотный остаток SO4.

Образуется серная кислота при взаимодействии оксида серы с водой

SO3+H2O -> H2SO4

Чистая 100%-я серная кислота (моногидрат) - тяжёлая жидкость, вязкая как масло, без цвета и запаха, с кислым «медным» вкусом. Уже при температуре +10 °С она застывает и превращается в кристаллическую массу.

Концентрированная серная кислота содержит приблизительно 95% H2 SO4. И застывает она при температуре ниже –20°С.

Взаимодействие с водой

Серная кислота хорошо растворяется в воде, смешиваясь с ней в любых соотношениях. При этом выделяется большое количество тепла.

Серная кислота способна поглощать пары воды из воздуха. Это её свойство используют в промышленности для осушения газов. Осушают газы, пропуская их через специальные ёмкости с серной кислотой. Конечно же, этот способ можно применять только для тех газов, которые не вступают в реакцию с ней.

Известно, что при попадании серной кислоты на многие органические вещества, особенно углеводы, эти вещества обугливаются. Дело в том, что углеводы, как и вода, содержат и водород, и кислород. Серная кислота отнимает у них эти элементы. Остаётся уголь.

В водном растворе H2SO4 индикаторы лакмус и метиловый оранжевый окрашиваются в красный цвет, что говорит о том, что этот раствор имеет кислый вкус.

Взаимодействие с металлами

Как и любая другая кислота, серная кислота способна замещать атомы водорода на атомы металла в своей молекуле. Взаимодействует она практически со всеми металлами.

В разбавленном виде серная кислота реагирует с металлами как обычная кислота. В результате реакции образуется соль с кислотным остатком SO4 и водород.

Zn + H2SO4 = ZnSO4 + H2

А концентрированная серная кислота является очень сильным окислителем. Она окисляет все металлы, независимо от их положения в ряду напряжений. И при реакции с металлами она сама восстанавливается до SO2. Водород не выделяется.

Сu + 2 H2SO4 (конц) = CuSO4 + SO2 + 2H2O

Zn + 2 H2SO4 (конц) = ZnSO4 + SO2 + 2H2O

А вот золото, железо, алюминий, металлы платиновой группы в серной кислоте не окисляются. Поэтому серную кислоту перевозят в стальных цистернах.

Сернокислые соли, которые получаются в результате таких реакций, называют сульфатами. Они не имеют цвета, легко кристаллизуются. Некоторые из них хорошо растворяются в воде. Малорастворимыми являются только CaSO4 и PbSO4 . Почти не растворяется в воде BaSO4.

Взаимодействие с основаниями


Реакция взаимодействия кислоты с основаниями называется реакцией нейтрализации. В результате реакции нейтрализации серной кислоты образуется соль, содержащая кислотный остаток SO4, и вода H2O.

Примеры реакций нейтрализации серной кислоты:

H2SO4 + 2 NaOH = Na2SO4 + 2 H2O

H2SO4 + CaOH = CaSO4 + 2 H2O

Серная кислота вступает в реакцию нейтрализации как с растворимыми, так и с нерастворимыми основаниями.

Так как в молекуле серной кислоты два атома водорода, и для её нейтрализации требуется два основания, то она относится к двухосновным кислотам.

Взаимодействие с основными оксидами

Из школьного курса химии нам известно, что оксидами называют сложные вещества, в состав которых входят два химических элемента, одним из которых является кислород в степени окисления -2 . Основными оксидами называют оксиды 1, 2 и некоторых 3 валентных металлов. Примеры основных оксидов: Li2O, Na2O, CuO, Ag2O, MgO, CaO, FeO, NiO.

С основными оксидами серная кислота вступает в реакцию нейтрализации. В результате такой реакции, как и в реакции с основаниями, образуются соль и вода. Соль содержит кислотный остаток SO4.

CuO + H2SO4 = CuSO4 + H2O

Взаимодействие с солями

Серная кислота взаимодействует с солями более слабых или летучих кислот, вытесняя из них эти кислоты. В результате такой реакции образуется соль с кислотным остатком SO4 и кислота

H2SO4+BaCl2=BaSO4+2HCl

Применение серной кислоты и её соединений


Бариева каша ВaSO4 способна задерживать рентгеновские лучи. Заполняя ею полые органы человеческого организма, рентгенологи исследуют их.

В медицине и строительстве широко применяют природный гипс CaSO4 * 2H2O, кристаллогидрат сульфата кальция. Глауберова соль Na2SO4 * 10H2O используется в медицине и ветеринарии, в химической промышленности - для производства соды и стекла. Медный купорос CuSO4 * 5H2O известен садоводам и агрономам, которые используют его для борьбы с вредителями и болезнями растений.

Серная кислота широко используется в различных отраслях промышленности: химической, металлообрабатывающей, нефтяной, текстильной, кожевенной и других.

Серная кислота - сильная двухосновная кислота, при н.у. маслянистая жидкость без цвета и запаха.

Обладает выраженным дегидратационным (водоотнимающим) действием. При попадании на кожу или слизистые оболочки приводит к тяжелым ожогам.

Замечу, что существует олеум - раствор SO 3 в безводной серной кислоте, дымящее жидкое или твердое вещество. Олеум применяется при изготовлении красителей, органическом синтезе и в производстве серной кислот.

Получение

Известны несколько способов получения серной кислоты. Применяется промышленный (контактный) способ, основанный на сжигании пирита, окислении образовавшегося SO 2 до SO 3 и последующим взаимодействием с водой.

FeS 2 + O 2 → (t) Fe 2 O 3 + SO 2

SO 2 + O 2 ⇄ (кат. - V 2 O 5) SO 3

SO 3 + H 2 O → H 2 SO 4


Нитрозный способ получения основан на взаимодействии сернистого газа с диоксидом азота IV в присутствии воды. Он состоит из нескольких этапов:

В окислительной башне смешивают оксиды азота (II) и (IV) с воздухом:

1. NO + O 2 → NO 2

Смесь газов подается в башни, орошаемые 75-ной% серной кислотой, здесь смесь оксидов азота поглощается с образованием нитрозилсерной кислоты:

2. NO + NO 2 + 2H 2 SO 4 = 2NO(HSO 4) + H 2 O

В ходе гидролиза нитрозилсерной кислоты получают азотистую кислоту и серную:

3. NO(HSO 4) + H 2 O = H 2 SO 4 + HNO 2

В упрощенном виде нитрозный способ можно записать так:

NO 2 + SO 2 + H 2 O = H 2 SO 4 + NO


Химические свойства

Неразбавленная серная кислота представляет собой ковалентное соединение.

В молекуле серная кислота тетраэдрически окружена четырьмя атомами кислорода, два из которых входят в состав гидроксильных групп. Связи S – O – двойные, а S – OH – одинарные.

Бесцветные, похожие на лед кристаллы имеют слоистую структуру: каждая молекула H 2 SO 4 соединена с четырьмя соседними прочными водородными связями, образуя единый пространственный каркас.

Структура жидкой серной кислоты похожа на структуру твердой, только целостность пространственного каркаса нарушена.

Физические свойства серной кислоты

При обычных условиях серная кислота – тяжёлая маслянистая жидкость без цвета и запаха. В технике серной кислотой называют её смеси как с водой, так и с серным ангидридом. Если молярное отношение SO 3: Н 2 О меньше 1, то это водный раствор серной кислоты, если больше 1, – раствор SO 3 в серной кислоте.

100 %-ная H 2 SO 4 кристаллизуется при 10,45 °С; Т кип = 296,2 °С; плотность 1,98 г/см 3 . H 2 SO 4 смешивается с Н 2 О и SO 3 в любых соотношениях с образованием гидратов, теплота гидратации настолько велика, что смесь может вскипать, разбрызгиваться и вызывать ожоги. Поэтому необходимо добавлять кислоту к воде, а не наоборот, поскольку при добавлении воды к кислоте более легкая вода окажется на поверхности кислоты, где и сосредоточится вся выделяющаяся теплота.

При нагревании и кипении водных растворов серной кислоты, содержащих до 70 % H 2 SO 4 , в паровую фазу выделяются только пары воды. Над более концентрированными растворами появляются и пары серной кислоты.

По структурным особенностям и аномалиям жидкая серная кислота похожа на воду. Здесь та же система водородных связей, почти такой же пространственный каркас.

Химические свойства серной кислоты

Серная кислота – одна из самых сильных минеральных кислот, из-за высокой полярности связь Н – О легко разрывается.

    В водном растворе серная кислота диссоциирует , образуя ион водорода и кислотный остаток:

H 2 SO 4 = H + + HSO 4 - ;

HSO 4 - = H + + SO 4 2- .

Суммарное уравнение:

H 2 SO 4 = 2H + + SO 4 2- .

    Проявляет свойства кислот , реагирует с металлами, оксидами металлов, основаниями и солями.

Разбавленная серная кислота не проявляет окислительных свойств, при ее взаимодействии с металлами выделяется водород и соль, содержащая металл в низшей степени окисления. На холоде кислота инертна по отношению к таким металлам, как железо, алюминий и даже барий.

Концентрированная кислота обладает окислительными свойствами. Возможные продукты взаимодействия простых веществ с концентрированной серной кислотой приведены в таблице. Показана зависимость продукта восстановления от концентрации кислоты и степени активности металла: чем активнее металл, тем глубже он восстанавливает сульфат-ион серной кислоты.

    Взаимодействие с оксидами:

CaO + H 2 SO 4 = CaSO 4 = H 2 O.

Взаимодействие с основаниями:

2NaOH + H 2 SO 4 = Na 2 SO 4 + 2H 2 O.

Взаимодействие с солями:

Na 2 CO 3 + H 2 SO 4 = Na 2 SO 4 + CO 2 + H 2 O.

    Окислительные свойства

Серная кислота окисляет HI и НВг до свободных галогенов:

H 2 SO 4 + 2HI = I 2 + 2H 2 O + SO 2.

Серная кислота отнимает химически связанную воду от органических соединений, содержащих гидроксильные группы. Дегидратация этилового спирта в присутствии концентрированной серной кислоты приводит к получению этилена:

С 2 Н 5 ОН = С 2 Н 4 + Н 2 О.

Обугливание сахара, целлюлозы, крахмала и др. углеводов при контакте с серной кислотой объясняется также их обезвоживанием:

C 6 H 12 O 6 + 12H 2 SO 4 = 18H 2 O + 12SO 2 + 6CO 2 .

H 2 SO 4 сильная 2х основная кислота , гигроскопичная.

HSO 4 - - гидросульфаты, SO 4 2- сульфаты.

Катион Ва используется для обнаружения сульфат ионов:

Взаимодействие серной к-ты с Ме протекает по разному в зависимости от концентрации к-ты и активности Ме.

Разбавленая к-та взаимодействует только с Ме в ряду активности до Н:

Конц. кислота является сильным окислителем за счет S 6+ она окисляет Ме в ряду по Ag, продуктами ее взаимодействия м/б разные в-ва в зависимости от активности Ме и условий реакции:

    Конц. холодная к-та не взаимодействует с Fe Al Cr

    С малоактивными Ме к-та восстанавливаеся до SO 2:

    С активными Ме продукты восстановления м/б SO 2 , S, H 2 S:

    Окислительные св-ва конц. К-ты проявляются и при взаимодействии с другими восстановителями. Она окисляет HBr, HI (но не соляную) и их соли до свободных галогенов а также С, S, H 2 S, Р:

19. Общая характеристика d - элементов VI группы. Химические свойства: оксиды и гидроксиды, зависимость проявления кислотно-основных свойств от степени окисления элемента. Комплексы и кислоты, содержащие хром.

Cr, Mo и W образуют подгруппу хрома. В ряду Cr – Mo – W увеличивается энергия ионизации, т.е. уплотняются электронные оболочки атомов, в особенности сильно при переходе от Mo к W. Последний вследствие лантаноидного сжатия имеет атомный и ионный радиусы, близкие к таковым у Mo. Поэтому молибден и вольфрам по свойствам ближе друг к другу, чем к хрому. Для хрома наиболее характерна степень окисления +3 и в меньшей мере +6. Для Mo и W наиболее характерна высшая степень окисления +6. В ряду Cr – Mo – W повышается температура плавления и теплоты атомизации (возгонки). Это объясняется усилением в металлическом кристалле ковалентной связи, возникающей за счет d – электронов.

Чистые Mo и W получают восстановлением галогенидов:

MoF 6 + 3 H 2 → Mo + 6 HF (1200 0 С)

При обычных условиях все 3 Ме взаимодействуют лишь с фтором, но при нагревании соединяются с другими неМе.

Не реагируют с водородом.

От хрома к вольфраму снижается активность.

Cr растворяется в разбавленных HCl и H 2 SO 4 с образованием CrCl 2 и CrSO 4 .

Молибден медленно реагирует с азотной кислотой, быстрее – с «царской водкой» и смесью HNO 3 и HF или H 2 SO 4 .

Вольфрам также растворяется в смеси HF и HNO 3 .

В присутствии окислителей все три металла реагируют с щелочными расплавами с образованием соответственно хроматов, молибдатов и вольфраматов.

W + 8 HF + 2 HNO 3 = H 2 + 2 NO + 4 H 2 O

Соединения Хром(II ) оксид хрома (II) получается при взаимодействии хлорида хрома со щелочами. Хлорид хрома получают при растворенни хрома в соляной к-те:

Неустойчивы, быстро окисляются кислородом воздуха и переходят в хром (III)

Соединения Хром (III ) оксид хрома (III) нерастворим в воде, ни в к-тах ни в щелочах, его амфотерная природа проявляется только при сплавлении с соответствующими соединениями:

Cr 2 O 3 + 2 NaOH = 2 NaCrO 2 + H 2 O

При действии щелочей на соли хрома (III) выпадает осадок гидроксида хрома(III):

Cr 3+ + 3 OH - = Cr(OH) 3 ↓

Cr(OH) 3 – амфотер

При взаимодействии со щелочами образует гидроксохромиты:

Cr(OH) 3 + 3 NaOH = Na 3

Соединения хрома(III) сильные восстановители.

Соединения хрома (IV ) – триоксид хрома (IV) – хромовый ангирид – кислотный оксид. При растворении его в воде образуются к-ты: H 2 CrO 4 хромовая к-та, H­ 2 Cr 2 O 7 двухромовая к-та

Соли – хроматы и дихроматы. Взаимные переходы хромата и дихромата можно выразить уравнением обратной реакции:

K 2 Cr 2 O 7 + 2 KOH = 2 K 2 CrO 4 + H 2 O

2 K 2 CrO 4 + H 2 SO 4 = K 2 Cr 2 O 7 + K 2 SO 4 + H 2 O

Хроматы и дихроматы сильные окислители. Соединения хрома(III) и хрома (IV) в кислых и щелочных растворах существуют в разных формах:

    в кислой среде – Сr 3+ ; Cr 2 O 7 2-

    в щелочной – 3- ; CrO 4 2-

Взаимное превращение протекают по разному в зависимости от реакции раствора:

    в кислой среде устанавливается равновесие:

    в щелочной среде

Т.е. окислительные свойства хрома 4 наиболее выражены в кислой среде,а восстановительные хрома 3 в щелочной. Поэтому окисление соединений хрома 3+ до хрома 6+ осуществляют в присутствии щелочи, а соединения хром 6+ применяют в качестве окислителей в кислых р-рах:

K 2 Cr 2 O 7 + 14 HCl = 2 CrCl 3 + 3 Cl 2 + 2 KCl + 7 H 2 O

Cr 2 (SO 4) 3 + 3 H 2 O 2 + 10 NaOH = 2 Na 2 CrO 4 + 3 Na 2 SO 4 + 8 H 2 O

Физические свойства серной кислоты:
Тяжелая маслянистая жидкость («купоросное масло»);
плотность 1,84 г/см3; нелетучая, хорошо растворима в воде – с сильным нагревом; t°пл. = 10,3°C, t°кип. = 296°С, очень гигроскопична, обладает водоотнимающими свойствами (обугливание бумаги, дерева, сахара).

Теплота гидратации настолько велика, что смесь может вскипать, разбрызгиваться и вызывать ожоги. Поэтому необходимо добавлять кислоту к воде, а не наоборот, поскольку при добавлении воды к кислоте более легкая вода окажется на поверхности кислоты, где и сосредоточится вся выделяющаяся теплота.

Промышленное производство серной кислоты (контактный способ):

1) 4FeS 2 + 11O 2 → 2Fe 2 O 3 + 8SO 2

2) 2SO 2 + O 2 V 2 O 5 → 2SO 3

3) nSO 3 + H 2 SO 4 → H 2 SO 4 ·nSO 3 (олеум)

Измельчённый очищенный влажный пирит (серный колчедан) сверху засыпают в печь для обжига в «кипящем слое «. Снизу (принцип противотока) пропускают воздух, обогащённый кислородом.
Из печи выходит печной газ, состав которого: SO 2 , O 2 , пары воды (пирит был влажный) и мельчайшие частицы огарка (оксида железа). Газ очищают от примесей твёрдых частиц (в циклоне и электрофильтре) и паров воды (в сушильной башне).
В контактном аппарате происходит окисление сернистого газа с использованием катализатора V 2 O 5 (пятиокись ванадия) для увеличения скорости реакции. Процесс окисления одного оксида в другой является обратимым. Поэтому подбирают оптимальные условия протекания прямой реакции — повышенное давление (т.к прямая реакция идет с уменьшением общего объема) и температура не выше 500 С (т.к реакция экзотермическая).

В поглотительной башне происходит поглощение оксида серы (VI) концентрированной серной кислотой.
Поглощение водой не используют, т.к оксид серы растворяется в воде с выделением большого количества теплоты, поэтому образующаяся серная кислота закипает и превращается в пар. Для того, чтобы не образовывалось сернокислотного тумана, используют 98%-ную концентрированную серную кислоту. Оксид серы очень хорошо растворяется в такой кислоте, образуя олеум: H 2 SO 4 ·nSO 3

Химические свойства серной кислоты:

H 2 SO 4 — сильная двухосновная кислота, одна из самых сильных минеральных кислот, из-за высокой полярности связь Н – О легко разрывается.

1) В водном растворе серная кислота диссоциирует , образуя ион водорода и кислотный остаток:
H 2 SO 4 = H + + HSO 4 — ;
HSO 4 — = H + + SO 4 2- .
Суммарное уравнение:
H 2 SO 4 = 2H + + SO 4 2- .

2) Взаимодействие серной кислоты с металлами :
Разбавленная серная кислота растворяет только металлы, стоящие в ряду напряжений левее водорода:
Zn 0 + H 2 +1 SO 4 (разб) → Zn +2 SO 4 + H 2

3) Взаимодействие серной кислоты с основными оксидами:
CuO + H 2 SO 4 → CuSO 4 + H 2 O

4) Взаимодействие серной кислоты с гидроксидами:
H 2 SO 4 + 2NaOH → Na 2 SO 4 + 2H 2 O
H 2 SO 4 + Cu(OH) 2 → CuSO 4 + 2H 2 O

5) Обменные реакции с солями:
BaCl 2 + H 2 SO 4 → BaSO 4 ↓ + 2HCl
Образование белого осадка BaSO 4 (нерастворимого в кислотах) используется для обнаружения серной кислоты и растворимых сульфатов (качественная реакция на сульфат ион).

Особые свойства концентрированной H 2 SO 4:

1) Концентрированная серная кислота является сильным окислителем ; при взаимодействии с металлами (кроме Au, Pt) восстанавливаться до S +4 O 2 , S 0 или H 2 S -2 в зависимости от активности металла. Без нагревания не реагирует с Fe, Al, Cr – пассивация. При взаимодействии с металлами, обладающими переменной валентностью, последние окисляются до более высоких степеней окисления , чем в случае с разбавленным раствором кислоты: Fe 0 Fe 3+ , Cr 0 Cr 3+ , Mn 0 Mn 4+ ,Sn 0 Sn 4+

Активный металл

8 Al + 15 H 2 SO 4(конц.) →4Al 2 (SO 4) 3 + 12H 2 O + 3H 2 S
4│2Al 0 – 6e — → 2Al 3+ — окисление
3│ S 6+ + 8e → S 2– восстановление

4Mg+ 5H 2 SO 4 → 4MgSO 4 + H 2 S­ + 4H 2 O

Металл средней активности

2Cr + 4 H 2 SO 4(конц.) → Cr 2 (SO 4) 3 + 4 H 2 O + S
1│ 2Cr 0 – 6e →2Cr 3+ — окисление
1│ S 6+ + 6e → S 0 – восстановление

Металл малоактивный

2Bi + 6H 2 SO 4(конц.) → Bi 2 (SO 4) 3 + 6H 2 O + 3SO 2
1│ 2Bi 0 – 6e → 2Bi 3+ – окисление
3│ S 6+ + 2e →S 4+ — восстановление

2Ag + 2H 2 SO 4 →Ag 2 SO 4 + SO 2 ­ + 2H 2 O

2) Концентрированная серная кислота окисляет некоторые неметаллы как правило до максимальной степени окисления, сама восстанавливается до S +4 O 2:

С + 2H 2 SO 4 (конц) → CO 2 ­ + 2SO 2 ­ + 2H 2 O

S+ 2H 2 SO 4 (конц) → 3SO 2 ­ + 2H 2 O

2P+ 5H 2 SO 4 (конц)→5SO 2 ­ + 2H 3 PO 4 + 2H 2 O

3) Окисление сложных веществ:
Серная кислота окисляет HI и НВг до свободных галогенов:
2 КВr + 2Н 2 SO 4 = К 2 SО 4 + SO 2 + Вr 2 + 2Н 2 О
2 КI + 2Н 2 SО 4 = К 2 SO 4 + SO 2 + I 2 + 2Н 2 О
Концентрированная серная кислота не может окислить хлорид-ионы до свободного хлора, что дает возможность получать НСl по реакции обмена:
NаСl + Н 2 SO 4 (конц.) = NаНSO 4 + НСl

Серная кислота отнимает химически связанную воду от органических соединений, содержащих гидроксильные группы. Дегидратация этилового спирта в присутствии концентрированной серной кислоты приводит к получению этилена:
С 2 Н 5 ОН = С 2 Н 4 + Н 2 О.

Обугливание сахара, целлюлозы, крахмала и др. углеводов при контакте с серной кислотой объясняется также их обезвоживанием:
C 6 H 12 O 6 + 12H 2 SO 4 = 18H 2 O + 12SO 2 + 6CO 2 .


Close